Issue 4, 2010

Ammonia dynamics in magnesium ammine from DFT and neutron scattering

Abstract

Energy storage in the form of ammonia bound in metal salts, so-called metal ammines, combines high energy density with the possibility of fast and reversible NH3 ab- and desorption kinetics. The mechanisms and processes involved in the NH3 kinetics are investigated by density functional theory (DFT) and quasielastic neutron scattering (QENS). The crystal structures of Mg(NH3)nCl2 with n = 6, 2, 1, which contains up to 9.19 wt % hydrogen and 0.115 kg hydrogen L−1, are first analyzed using an algorithm based on simulated annealing (SA), finding all the experimentally known structures and predicting the C2/m structure for the uncharacterized low temperature phase of Mg(NH3)6Cl2. It is found from DFT that the rotation of ammonia in the hexammine complex (n = 6) requires an activation energy of 0.09 eV in the low temperature phase of Mg(NH3)6Cl2 and 0.002–0.12 eV in the high temperature phases; effectively having free rotors as observed experimentally. The findings are supported by the QENS data, which identify C3 rotations of NH3 in the low temperature phase with an activation energy of 0.09 eV. The calculated diffusion rates were found to be 106–107 Hz at the desorption temperatures for all n = 6, 2, 1 systems. DFT calculations involving bulk diffusion of NH3 correctly reproduces the trends observed in the experimental desorption enthalpies. In particular, for n = 6, 2, 1, there is a good agreement between activation barriers and experimental enthalpies. These results indicate that the desorption of NH3 is likely to be diffusion limited.

Graphical abstract: Ammonia dynamics in magnesium ammine from DFT and neutron scattering

Article information

Article type
Paper
Submitted
13 Oct 2009
Accepted
23 Dec 2009
First published
04 Feb 2010

Energy Environ. Sci., 2010,3, 448-456

Ammonia dynamics in magnesium ammine from DFT and neutron scattering

A. Tekin, J. S. Hummelshøj, H. S. Jacobsen, D. Sveinbjörnsson, D. Blanchard, J. K. Nørskov and T. Vegge, Energy Environ. Sci., 2010, 3, 448 DOI: 10.1039/B921442A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements