Role of Radiochemistry in Nuclear Role of Radiochemistry in Nuclear Data Research and the Cyclotron Data Research and the Cyclotron Production of Medical RadionuclidesProduction of Medical Radionuclides

Syed M. Qaim

Research Centre Jülich and University of Cologne, Germany

Becquerel Medal Lecture given at the "Seminar on Production, Use and Disposal of Radioisotopes in Medicine", held in Loughborough on 11 November 2008 under the Auspices of the Radiochemistry Group of the Royal Society of Chemistry, London, UK.

Topics

- \bullet Introduction
- Radiochemical determination of nuclear data
- Nuclear data for medical applications
	- –*radionuclide production*
	- *decay data of novel PET nuclides*
- Radiochemistry in cyclotron production of medical radionuclides
	- *target chemistry, radiochemical separations, quality assurance*
- Novel positron emitters
- Conclusions and perspectives
- Appreciation

Introduction

The term "nuclear data" includes all data which describe the characteristics of nuclei as well as their interactions

Nuclear Structure Data

(*e.g. nuclear level, spin, parity***)**

Nuclear Decay Data

(e.g. T1/2, ^α-, β-, ^γ *-ray energy)*

Nuclear Reaction Data

(e.g. Q-value, energy / angular distribution, cross section, fission yield)

Nuclear Data

Applications of Nuclear Data

- Reactor dosimetry
- -
- Materials damage
- Nuclear heating
- -Nuclear transmutation //////// lon beam analysis
- -Neutron activation analysis - Astrophysics

Neutron Data Charged Particle Data

- Cyclotron production of Activation products //////////////medical radionuclides
	- Charged particle therapy
	- \mathcal{F}/\mathcal{T} hin layer activation analysis
	-
	-
	- -**Cosmochemistry**

Major applications of nuclear data are in energy research and medicine

Radiochemical Determination of Charged Particle Data

Principle

Activation of sample; chemical separation and identification of radioactive product

Steps

- \bullet Preparation of thin sample *(sedimentation, electrolysis, etc.)*
- $\left\langle \bullet \right\rangle$ Low current irradiation of several samples in a row *(stacked-foil technique)*
- $\hat{\bullet}$ Determination of beam current
- \bullet Calculation of projectile energy degradation in the stack
- \bullet Quantitative measurement of radioactivity using highresolution detectors
- $\left| \mathbf{\hat{S}}\right|$ Calculation of cross section and its uncertainty

Irradiation Geometry

A. Solid samples

Radiochemical Separations

Aims

- \bullet To isolate desired product in a pure form
- $\sqrt{\ }$ To prepare thin samples for soft-radiation counting (β-, X-rays)
- \bullet σ σ recover the enriched target material

Commonly used methods

- Ion-exchange
- Solvent extraction
- Distillation
- Thermochromatography
- Co-precipitation, followed by further separation
- Steam-bath

Quantitative nature of work to be emphasized

Advantageous Use of Radiochemical Methods in Nuclear Data Research

- **Investigation of low-yield reactions**
	- Low cross section $\mathcal{O}(\mathsf{nb}-\mathsf{mb})$
	- High matrix activity
- **Study of soft radiation emitters**
	- $-$ ß- emitters
	- Low-energy X-ray emitters
- **Characterisation of low-lying isomeric states**
- **Search for short-lived products**

High quality, well-optimised separations are mandatory

Nuclear Data for Medical Applications

- Radionuclide production
	- standard SPECT and PET radionuclides
	- novel positron emitters
	- therapeutic radionuclides
- \blacklozenge Decay properties (selected positron emitters : 64Cu, 76Br, 120I, etc.)
- **Hadron** therapy (short-lived activation products)

Nuclear Data for Radionuclide Production

- Choice of optimum energy range
	- maximise production yield
	- minimise radionuclidic impurities
- Constraints
	- availability of suitable cyclotron and enriched target material

Important considerations

- Search for alternative routes to achieve higher purity
- Isomeric states
- Use of X-ray spectrometry
- Role of nuclear theory
- Special case: light elements

Role of Nuclear Data in Optimisation of a Production Route using Charged Particles

Production of 123I via the 124Xe(p,x)123I-Process

Excitation Function

Routes

This is the method of choice; leads to the highest purity product.

Routes for Production of 124 I

(all values calculated from excitation functions measured at Jülich)

124Te(p,n) reaction gives the purest form of 124 I

Routes for Production of 64Cu

•Activity/mg Zn at $\Phi_{\sf n}$ = 8.7 x 10¹³ n cm⁻² s⁻¹ for 150 h

64Ni(p,n)64Cu reaction is the method of choice

Formation of Isomeric States

● Occasionally unavoidable isomeric impurity • Level depends mainly on type of reaction

Example : ⁹⁴Mo(p,n)^{94m,g}Tc //////////// Rösch, Qaim, RCA **62**, 115 (1993)

94gTc impurity in 94mTc

Fundamental investigations mandatory

Palladium-103

T_{γ_2} = 16.96 d; EC = 100 %; X-rays; Auger electrons

Nuclear reaction : ¹⁰³Rh(p,n)¹⁰³Pd Measurements : Stacked-foil technique; X-ray spectroscopy Nuclear model calculation : Hauser-Feshbach + Precompound (STAPRE)

Excitation Function

Novel Therapeutic Radionuclides

Examples:

 $_{\gamma_2}$ = 4.33 d; Auger electrons \sim 33 per decay) $^{195\mathrm{m}}$ Pt (T $_{\gamma_2}$ = 4.03 d; Auger electrons ~ 26 per decay) *High-spin isomers*

Measurements: Stacked-foil technique; X-ray spectroscopy

Production Method: α-particles on enriched 192Os

Hilgers et al. , ARI **66**, 545 (2008). $^{195\text{m}}$ Pt-yield E $_{\alpha}$ = 24 \rightarrow 18 MeV: 0.013 MBq/ μA·h $^{193\mathrm{m}}$ Pt-yield E $_{\alpha}$ = 28 \rightarrow 24 MeV: 0.25 MBq/ μA·h

Production of high-specific activity 193mPt in sufficient quantity feasible

Light Elements: Excitation Function of 18O(p,n)18F Reaction

Optimum energy range: $E_p = 16 \rightarrow 3$ MeV

Hess et al., RCA **89**, 357 (2001).

- $\hat{\mathbf{y}}$ Excitation function rather unique and shows strong fluctuation
- • For a (p,n) reaction, both neutron counting and activation measurement possible; the latter is more relevant
- •Theory cannot reproduce the excitation function

Recent Progress in Availability of Charged Particle Data for Radionuclide Production

Experimental studies at

Brussels, Cape Town, Debrecen, Jülich, Los Alamos, Milan, Sendai

Standardisation Work atNuclear Data Section, IAEA, Vienna

- \blacklozenge Compilation (EXFOR)
- •**Evaluation**
	- diagnostic radionuclides ///////TECDOC-1211 (2001)
	- $-$ therapeutic radionuclides
	- emerging positron emitters CRP *in preparation*

TECDOC- reaching finalisation

Worldwide efforts underway to provide reliable data

Decay Data of Novel PET Nuclides

Status of Data

- Decay data generally well known
- \bullet Occasionally I_{β^+} rather uncertain due to I_{β}
	- use of impure samples
	- lack of high-precision β-ray spectroscopy

Modern Experimental Approach

- Preparation of very clean thin samples
- Accurate measurement of annihilation radiation (HPGe detector γ-ray spectrometry and γγ-coincidence counting)
- X-ray spectrometry using a thin Ge or a Si(Li) detector

β + of 64Cu (T ½ = 12.7 h) Determination of I Sample preparation: ⁶⁴Ni(p,n)⁶⁴Cu or ⁶⁶Zn(d,α)⁶⁴Cu reaction; in each case chemical separation X-ray spectrum γ-ray spectrum -1500 5000 150000 511 $K_{\alpha}(Ni)$ $\frac{1200}{80}$
 $\frac{1200}{80}$
 $\frac{1200}{80}$ 1346 4000 120000 Counts/channel .900 90000 Counts/channel 3000 -600 60000 $K_{\rm a}$ (Ni) $2000 -$ 30000 300 1461 1000Ω n $\overline{50}$ 60 10 15 20^{\degree} 30 40 70 200 400 600 800 1000 1200 1400 1600 X-ray energy [keV] y -ray energy [keV]

Precise determination of I β + performed

Recently Determined I β + Values of some Radionuclides

a) ENSDF (2006) b) Qaim et al., RCA **95**, 67 (2007) c) Hohn et al., RCA 88, 139 (2000) all Quim et al., ARI 58, 69 (2003) e) Woods et al., ARI **43**, 551 (1992)

Radiochemistry in Cyclotron Production of Medical Radionuclides

Special features

- $\hat{\bullet}$ Chemistry starts already in the target during irradiation
- \blacklozenge High level of radioactivity
- \blacklozenge Generally short-lived products
- $\mathcal{O}_\mathbb{Z}$ Stringent purity control
- $\hat{\bullet}$ Demand of high specific activity

Factors related to target chemistry

- Nuclear recoil effects
- $\hat{\bullet}$ Radiation induced chemical reactions

The two effects need considerable attention when liquid and geaseous targets are used

Target Chemistry in Production of Short-lived Organic Positron Emitters

• All radionuclides are almost pure $β$ ⁺ emitters.

• Large quantities can be produced at a small-sized two particle cyclotron.

• Chemical form of radioactive product depends on target filling.

Novel Positron Emitters in Medicine

Needs

- Study of slow metabolic process, e.g. protein synthesis, cell proliferation, etc. (satellite concept)
- Analogue approach
	- Quantification of SPECT-radiopharmaceuticals
	- Therapy planning, exact dosimetry

Problems

- –Constraints on yield and purity
- Imaging difficulties due to high energy positrons and γ-rays

Gas Targetry

Example: Production of alkali metal or radiohalogen via irradiation of an enriched rare gas

• Removal $\%$ of $\%$ radioactivity (e.g. 76Br, 82mRb) by rinsing the inner walls of the target

• Separation yield > 95 %

Blessing et al., ARI **48**, 37 (1997).

Solid Targetry

Sample preparation: electrolysis, thin layer formation Heat dissipation: 2^π or 4^π cooling, slanting beam **Example:** Use of slanting beam

• Standard / technology ${\sf used} \times$ in \lor medium \lor to \lor large scale production of radionuclides $(55Co, 124)$, etc.)

Separation of Radioiodine from a Solid Target

Example: Dry distillation technique for removal of ¹²⁴I from a $^{124}\mathrm{TeO}_{2}$ target irradiated with protons

Distillation at 750 °C for 15 minBatch yield : 4480 MBq (≈13mCi) 124 Radionuclidic purity (%): 1241 (99), 1231 (<1), 1251 (0.1) Radiochemical purity: 22 > 98 % iodide Chemical impurity: $\!\!\mathscr{D}/\!\!\mathscr{D}$ Te (<1µg)

Separation of 73Se (T½ = 7.1 h) via Thermochromatography

Irradiated Cu₃As target heated in O_2 stream

– Fractionated removal of As and radioselenium

 \rightarrow **Two step thermochromatography essential** \implies **Purification of 73Se via extraction in benzene**

Batch yield: 6 GBq (≈160 mCi) ⁷³Se (2 h, 20 µA)

72,75Se impurity: < 0.05 %

Radiochemical Separation of 86Y (T ½ = 14.7 h) Produced via 86Sr(p,n)-Process

$\bm{\mathrm{Target}}$: 96.3 % $^{86}\mathrm{SrCO}_3$

Irradiation : 16 MeV p, 4µA, 5h

Elution Chromatogram

Separation **:**

Coprecipitation and ion-exchange chromatography

- Dissolution of $^{86}\mathrm{SrCO}_3$ in conc. HCl
- Addition of 2 mg La³⁺ carrier
- Precipitation as $La(OH)_3$ (carrying $86Y)$
- Dissolution of ppt. in HCl
- Transfer to Aminex A5
- Elution with α-HIB *(separation of 86Y from La)*

Rösch et al., ARI **44**, 677 (1993).

• 86Y activity (3 GBq) collected in 3 drops

Quality Assurance of the Product

Radionuclidic purity

- High resolution γ-ray spectrometry ($^{64}{\rm Cu},$ $^{86}{\rm Y},$ $^{94{\rm m}}{\rm T}$ c, $^{124}{\rm I},$ etc.)
- X-ray spectrometry (82Sr, 125), etc.)

Radiochemical purity

 \bullet TLC, HPLC (94 mTcO $_4$, 124 l $\frac{1}{2}$, 124 $|O_3$)

Chemical purity

- UV-spectrophotometry
- ICP-OES

Specific activity

- Determination of radioactivity via radiation detector
- Determination of mass via UV, refractive index or thermal conductivity detector

(Increasing demand on high specific activity)

Novel Positron Emitters for Medical Applications

÷.

χ.

Conclusions and Perspectives

- Radiochemical method of nuclear data measurement is well established; it is especially suitable for studying softradiation emitting radionuclides
- Nuclear data are of basic significance in cyclotron production of medical radionuclides
- Radionuclide production technology well established. Yet there is constant need of development of other radionuclides.
- Demands on quality assurance are stringent
- Novel PET-radionuclides ⁶⁴Cu, ⁸⁶Y, ¹²⁴I, etc. in great demand.
- Radiotracer research is opening new perspectives
- Interdisciplinary approaches absolutely necessary

Combination of interesting science and useful technology

Appreciation

- Educational Institutions
- Governments (Pakistan, UK, Germany)
- Research Centre Juelich, University of Cologne
- Department Heads, Administrators
- Co-workers, Guest Scientists, Ph.D. Students
- Co-operation Partners
- Funding Agencies
- \bullet Family and Friends
- Radiochemistry Group of RSC for Honour and Felicitation

Examples of Thin Sample Preparation

Comparison of Experimental Data with Nuclear Model Calculations

85Rb(p,xn)-reactions Calculation: ALICE-IPPE Kastleiner et al., RCA **92**, 449 (2004). (Jülich – Cape Town – Obninsk)

122Te(p,xn)-reactions Calculation: STAPRE Hohn et al., ARI **49**, 93 (1998). (Jülich – Debrecen)

- (p,xn)-reactions are described well by statistical/precompound model as well as by exciton model
- Isomeric cross section is estimated well by STAPRE

Copper-67

 \top_{γ_2} = 2.58 d; β= = 100%; E $_{\beta}$ = = 0.58 MeV; E $_{\gamma}$ = 184.6 keV (48.6 %) Nuclear reaction: 68Zn(p,2p)67Cu Measurements: / Interference from ⁶⁷Ga; chemical separation / and γ-ray spectrometry mandatory.

Nuclear model calculation: ALICIE-IPPE

Stoll et al., RCA **90**, 309 (2002)

Predictive power of theory for rather complex reactions is limited

Hot Chemical Reactions in a Gas Target

Example: 14 N(p,ɑ) 11 C reaction in N $_{2}$ gas target

Formation of precursors 11C/+/N₂////>/11CN +/N $11CN + O_2 \rightarrow 11CO_2 + NO$ 11C + O2 4 11CO + NO $11CO + O_2$ $\sim 11CO_2 + O$

• A high current irradiation for 45 min leads mainly to $^{11}\mathrm{CO}_2$

Gas Targetry

Target: suitable construction material; conical shape; target dimensions and gas pressure dependent on excitation function

Example: Production of ¹¹CO₂ via ¹⁴N(p,α)¹¹C reaction

• Removal of radioactivity by expansion

• Batch yield (13 MeV p, 30 μA, 40min) [≈] 100 GBq

Production of 18F using a Water Target

Nuclear process: 18O(p,n)18F

Batch yield of 18F-aq - E_{P} = 16 \rightarrow 3 MeV 15 μA, 2 h *74 GBq (2 Ci)*

Purification of 18F- and Recovery of H₂18O

- Transfer of irradiated water to an anion-exchange column (AG 1x8)
- \bullet Adsorption of 18F**-** on the column
- \bullet $H₂¹⁸O$ flows through and is recovered for reuse
- \bigcap Desorption of ¹⁸F⁻ from the column using K₂CO₃

Solid Targetry: Example: Production of 124 via the 124Te(p,n)-Process

Irradiation Arrangement for Medium Scale Production

 $E_0 = 13 \rightarrow 9$ MeV Irradiation: 6 h, 10 μA

