Role of Radiochemistry in Nuclear Data Research and the Cyclotron Production of Medical Radionuclides

Syed M. Qaim

Research Centre Jülich and University of Cologne, Germany

Becquerel Medal Lecture given at the "Seminar on Production, Use and Disposal of Radioisotopes in Medicine", held in Loughborough on 11 November 2008 under the Auspices of the Radiochemistry Group of the Royal Society of Chemistry, London, UK.

Topics

- Introduction
- Radiochemical determination of nuclear data
- Nuclear data for medical applications
 - radionuclide production
 - decay data of novel PET nuclides
- Radiochemistry in cyclotron production of medical radionuclides
 - target chemistry, radiochemical separations, quality assurance
- Novel positron emitters
- Conclusions and perspectives
- Appreciation

Introduction

The term "nuclear data" includes all data which describe the characteristics of nuclei as well as their interactions

Nuclear Structure Data

(e.g. nuclear level, spin, parity)

Nuclear Decay Data

(e.g. $T_{1/2}$, α -, β -, γ -ray energy)

Nuclear Reaction Data

(e.g. Q-value, energy / angular distribution, cross section, fission yield)

Nuclear Data

Applications of Nuclear Data

Neutron Data

- Reactor dosimetry
- Activation products
- Materials damage
- Nuclear heating
- Nuclear transmutation
- Neutron activation analysis Astrophysics

Charged Particle Data

- Cyclotron production of medical radionuclides
- Charged particle therapy
- Thin layer activation analysis
- Ion beam analysis
- Cosmochemistry

Major applications of nuclear data are in energy research and medicine

Radiochemical Determination of Charged Particle Data

Principle

Activation of sample; chemical separation and identification of radioactive product

Steps

- Preparation of thin sample (sedimentation, electrolysis, etc.)
- Low current irradiation of several samples in a row (stacked-foil technique)
- Determination of beam current
- Calculation of projectile energy degradation in the stack
- Quantitative measurement of radioactivity using highresolution detectors
- Calculation of cross section and its uncertainty

Irradiation Geometry

A. Solid samples

Radiochemical Separations

Aims

- To isolate desired product in a pure form
- To prepare thin samples for soft-radiation counting (β -, X-rays)
- To recover the enriched target material

Commonly used methods

- Ion-exchange
- Solvent extraction
- Distillation
- Thermochromatography
- Co-precipitation, followed by further separation
- Steam-bath

Quantitative nature of work to be emphasized

Advantageous Use of Radiochemical Methods in Nuclear Data Research

- Investigation of low-yield reactions
 - Low cross section (nb mb)
 - High matrix activity
- Study of soft radiation emitters
 - ß⁻ emitters
 - Low-energy X-ray emitters
- Characterisation of low-lying isomeric states
- Search for short-lived products

High quality, well-optimised separations are mandatory

Nuclear Data for Medical Applications

- Radionuclide production
 - standard SPECT and PET radionuclides
 - novel positron emitters
 - therapeutic radionuclides
- Decay properties (selected positron emitters : ⁶⁴Cu, ⁷⁶Br, ¹²⁰I, etc.)
- Hadron therapy (short-lived activation products)

Nuclear Data for Radionuclide Production

- Choice of optimum energy range
 - maximise production yield
 - minimise radionuclidic impurities
- Constraints
 - availability of suitable cyclotron and enriched target material

Important considerations

- Search for alternative routes to achieve higher purity
- Isomeric states
- Use of X-ray spectrometry
- Role of nuclear theory
- Special case: light elements

Role of Nuclear Data in Optimisation of a Production Route using Charged Particles

Production of ¹²³I via the ¹²⁴Xe(p,x)¹²³I-Process

Excitation Function

Routes

This is the method of choice; leads to the highest purity product.

Routes for Production of 124

(all values calculated from excitation functions measured at Jülich)

Nuclear	Energy range	Thick target	lr	mpurity [%]
reaction	[MeV]	yield of ¹²⁴ I [MBq/µA⋅h]	123	125	126
¹²⁴ Te(d,2n)	14 → 10	17.5		1.7	
¹²⁴ Te(p,n)	12 → 8	16	1.0	< 0.1	-
¹²⁵ Te(p,2n)	21 → 15	81	7.4	0.9	
¹²⁶ Te(p,3n)	38 → 28	222	148	1.0	1.0
^{nat} Sb(α,xn)	22 → 13	1.02	890	13	16
¹²¹ Sb(α,n)	22 → 13	2.1	895	< 0.2	< 0.2
^{nat} Sb(³ He,xn)	35 → 13	0.95	3877	0.6	0.6

¹²⁴Te(p,n) reaction gives the purest form of ¹²⁴I

Routes for Production of 64Cu

Production route	Suitable energy range [MeV]	Integral yield [MBq/µA⋅h]
⁶⁴ Zn(n,p) ⁶⁴ Cu (<i>ORNL</i>)	Fission spectrum	14.5*
⁶⁴ Ni(d,2n) ⁶⁴ Cu (<i>Manchester,</i> Debrecen/Brussels)	19 → 15	389
⁶⁴ Ni(p,n) ⁶⁴ Cu (<i>Jülich</i>)	12 → 9	241
^{nat} Zn(d,x) ⁶⁴ Cu (<i>Jülich,</i> <i>Debrecen, Milan</i>)	25 → 10	50
⁶⁶ Zn(d,α) ⁶⁴ Cu (<i>Jülich</i>)	13 → 7	6.6
⁶⁸ Zn(p,αn) ⁶⁴ Cu (<i>Jülich,</i> Debrecen/Cape Town)	35 → 20	~100

•Activity/mg Zn at $\Phi_n = 8.7 \times 10^{13} \text{ n cm}^{-2} \text{ s}^{-1}$ for 150 h

⁶⁴Ni(p,n)⁶⁴Cu reaction is the method of choice

Formation of Isomeric States

Occasionally unavoidable isomeric impurity
Level depends mainly on type of reaction

Example : ⁹⁴Mo(p,n)^{94m,g}Tc

Rösch, Qaim, RCA 62, 115 (1993)

^{94g}Tc impurity in ^{94m}Tc

⁹⁴ Mo(o,n)	: 6%
⁹³ Nb(³	He,2n)	: 25%
⁹² Mo(a,pn)	: 30%

Fundamental investigations mandatory

Palladium-103

$T_{\frac{1}{2}}$ = 16.96 d; EC = 100 %; X-rays; Auger electrons

Nuclear reaction : ¹⁰³Rh(p,n)¹⁰³Pd Measurements : Stacked-foil technique; X-ray spectroscopy Nuclear model calculation : Hauser-Feshbach + Precompound (STAPRE)

Excitation Function

Novel Therapeutic Radionuclides

Examples:

^{193m}Pt ($T_{\frac{1}{2}}$ = 4.33 d; Auger electrons ~ 33 per decay) ^{195m}Pt ($T_{\frac{1}{2}}$ = 4.03 d; Auger electrons ~ 26 per decay) *High-spin isomers*

Measurements: Stacked-foil technique; X-ray spectroscopy

Production Method: α -particles on enriched ¹⁹²Os

Hilgers et al. , ARI 66, 545 (2008).

^{195m}Pt-yield $E_{\alpha} = 24 \rightarrow 18$ MeV: 0.013 MBq/µA·h

^{193m}Pt-yield $E_{\alpha} = 28 \rightarrow 24$ MeV: 0.25 MBq/µA·h

Production of high-specific activity ^{193m}Pt in sufficient quantity feasible

Light Elements: Excitation Function of ¹⁸O(p,n)¹⁸F Reaction

Optimum energy range: $E_P = 16 \rightarrow 3 \text{ MeV}$

Hess et al., RCA **89**, 357 (2001).

- Excitation function rather unique and shows strong fluctuation
- For a (p,n) reaction, both neutron counting and activation measurement possible; the latter is more relevant
- Theory cannot reproduce the excitation function

Recent Progress in Availability of Charged Particle Data for Radionuclide Production

Experimental studies at

Brussels, Cape Town, Debrecen, Jülich, Los Alamos, Milan, Sendai

Standardisation Work at Nuclear Data Section, IAEA, Vienna

- Compilation (EXFOR)
- Evaluation
 - diagnostic radionuclides
 - therapeutic radionuclides
 - emerging positron emitters

TECDOC-1211 (2001) TECDOC- reaching finalisation CRP in preparation

Worldwide efforts underway to provide reliable data

Decay Data of Novel PET Nuclides

Status of Data

- Decay data generally well known
- Occasionally I_{β^+} rather uncertain due to
 - use of impure samples
 - lack of high-precision β-ray spectroscopy

Modern Experimental Approach

- Preparation of very clean thin samples
- Accurate measurement of annihilation radiation (HPGe detector γ-ray spectrometry and γγ-coincidence counting)
- X-ray spectrometry using a thin Ge or a Si(Li) detector

Determination of I_{β^+} of ⁶⁴Cu ($T_{\frac{1}{2}}$ = 12.7 h)

Sample preparation: ${}^{64}Ni(p,n){}^{64}Cu$ or ${}^{66}Zn(d,\alpha){}^{64}Cu$ reaction;

in each case chemical separation

 γ -ray spectrum

X-ray spectrum

Precise determination of I_{B+} performed

Recently Determined I_{β+} Values of some Radionuclides

Radionuclide	T _{1/2}	Positron emission intensity (%)	
		Literature values ^a	Precise values
⁶⁴ Cu	12.7 h	17.4 – 19.0	17.8 ± 0.4 ^b
⁷⁶ Br	16.2 h	56.0 – 62.5	58.2 ± 1.9 ^b
120	1.35 h	39 – 81	56.1 ± 3.2 °
124	4.18 d	21.6 – 26.0	22.0 ± 0.5 ^{b,d} 21.6 ± 0.4 ^e

a) ENSDF (2006)
c) Hohn et al., RCA 88, 139 (2000)
e) Woods et al., ARI 43, 551 (1992)

b) Qaim et al., RCA 95, 67 (2007)d) Qaim et al., ARI 58, 69 (2003)

Radiochemistry in Cyclotron Production of Medical Radionuclides

Special features

- Chemistry starts already in the target during irradiation
- High level of radioactivity
- Generally short-lived products
- Stringent purity control
- Demand of high specific activity

Factors related to target chemistry

- Nuclear recoil effects
- Radiation induced chemical reactions

The two effects need considerable attention when liquid and geaseous targets are used

Target Chemistry in Production of Short-lived Organic Positron Emitters

Radionuclide	T _{1/2}	Mode of decay	Production data				
			Nuclear reaction	Energy range	Calculated yield MBq/µA·h	Target	In-target product
¹¹ C	20 min	β ⁺ (99.8) EC (0.2)	¹⁴ N(p,α)	$13 \rightarrow 3$	3820	N ₂ (O ₂)	¹¹ CO, ¹¹ CO ₂
^{13}N	10 min	β+ (100)	¹⁶ O(p,α)	$16 \rightarrow 7$	1665	H ₂ ¹⁶ O	¹³ NO ₂ ⁻ , ¹³ NO ₃ ⁻
¹⁵ O	2 min	β ⁺ (99.9) EC (0.1)	¹⁴ N(d,n) ¹⁵ N(p,n)	$\begin{array}{c} 8 \rightarrow 0 \\ 10 \rightarrow 0 \end{array}$	2368 2220	$N_2(O_2)$ ${}^{15}N_2(O_2)$	¹⁵ OO ¹⁵ OO
¹⁸ F	110 min	β ⁺ (97) EC (3)	$^{18}O(p,n)$ $^{20}Ne(d,\alpha)$	$16 \rightarrow 3$ $14 \rightarrow 0$	2960 1110	$H_2^{-18}O$ $^{18}O_2/(F_2)$ Ne(F ₂)	$^{18}F_{aq}^{-}$ [^{18}F]F ₂ [^{18}F]F ₂

• All radionuclides are almost pure β^+ emitters.

• Large quantities can be produced at a small-sized two particle cyclotron.

Chemical form of radioactive product depends on target filling.

Novel Positron Emitters in Medicine

Needs

- Study of slow metabolic process, e.g. protein synthesis, cell proliferation, etc.
 (satellite concept)
- Analogue approach
 - Quantification of SPECT-radiopharmaceuticals
 - Therapy planning, exact dosimetry

Problems

- Constraints on yield and purity
- Imaging difficulties due to high energy positrons and γ -rays

Gas Targetry

Example: Production of alkali metal or radiohalogen via irradiation of an enriched rare gas

 Removal of radioactivity (e.g. ⁷⁶Br, ^{82m}Rb) by rinsing the inner walls of the target

Separation yield > 95 %

Blessing et al., ARI **48**, 37 (1997).

Solid Targetry

Sample preparation: electrolysis, thin layer formation **Heat dissipation:** 2π or 4π cooling, slanting beam **Example:** Use of slanting beam

 Standard technology used in medium to large scale production of radionuclides (⁵⁵Co, ¹²⁴I, etc.)

Beam current: 30 – 300 µA

Separation of Radioiodine from a Solid Target

Example: Dry distillation technique for removal of ¹²⁴I from a ¹²⁴TeO₂ target irradiated with protons

Distillation at 750 °C for 15 min

Batch yield : Radiochemical purity: > 98 % iodide Chemical impurity: Te (<1µg)

480 MBq (≈13mCi) ¹²⁴I Radionuclidic purity (%): ¹²⁴I (99), ¹²³I (<1), ¹²⁵I (0.1)

Separation of ⁷³Se (T_{1/2} = 7.1 h) via Thermochromatography

- Irradiated Cu₃As target heated in O₂ stream
- Fractionated removal of As and radioselenium

Blessing et al., RCA **65**, 93 (1994).

Two step thermochromatography essential

Purification of ⁷³Se via extraction in benzene

Batch yield: 6 GBq (≈160 mCi) ⁷³Se (2 h, 20 μA)

^{72,75}Se impurity: < 0.05 %

Radiochemical Separation of ⁸⁶Y (T_{1/2} = 14.7 h) Produced via ⁸⁶Sr(p,n)-Process

Target : 96.3 % ⁸⁶SrCO₃ pellet

Irradiation : 16 MeV p, 4µA, 5h

Separation :

Coprecipitation and ion-exchange chromatography

- Dissolution of ⁸⁶SrCO₃ in conc. HCI
- Addition of 2 mg La³⁺ carrier
- Precipitation as La(OH)₃ (carrying ⁸⁶Y)
- Dissolution of ppt. in HCl
- Transfer to Aminex A5
- Elution with α-HIB (separation of ⁸⁶Y from La)

Elution Chromatogram

Rösch et al., ARI **44**, 677 (1993).

⁸⁶Y activity (3 GBq) collected in 3 drops

Quality Assurance of the Product

Radionuclidic purity

- High resolution γ-ray spectrometry (⁶⁴Cu, ⁸⁶Y, ^{94m}Tc, ¹²⁴I, etc.)
- X-ray spectrometry (82Sr, 125I, etc.)

Radiochemical purity

• TLC, HPLC (^{94m}TcO₄⁻, ¹²⁴I⁻, ¹²⁴IO₃⁻)

Chemical purity

- UV-spectrophotometry
- ICP-OES

Specific activity

- Determination of radioactivity via radiation detector
- Determination of mass via UV, refractive index or thermal conductivity detector

(Increasing demand on high specific activity)

Novel Positron Emitters for Medical Applications

Nuclide	Major production route	Energy range [MeV]	Application
³⁸ K (7.6 min)	³⁵ Cl(α,n)	22 → 10	Cardiology
⁵⁵Co (17.6 h)	⁵⁸ Ni(p,α) ⁵⁴ Fe(d,n)	15 → 7 10 → 5	Tumor imaging; neuronal Ca marker
⁶⁴ Cu (12.7 h)	⁶⁴ Ni(p,n)	14 → 9	Radioimmunotherapy
⁷³ Se (7.1 h)	⁷⁵ As(p,3n)	40 → 30	Selenopharmaceuticals
⁷⁵ Br (1.6 h)	⁷⁵ As(³ He,3n)	35 → 25	Bromopharmaceuticals
⁷⁶ Br (16.0 h)	⁷⁶ Se(p,n)	15 → 8	Radioimmunotherapy
86Y (14.7 h)	⁸⁶ Sr(p,n)	14 → 10	Therapy planning
^{94m} Tc (52 min)	⁹⁴ Mo(p,n)	13 → 8	Quantification of SPECT- pharmaceuticals
120 (1.3 h)	¹²⁰ Te(p,n)	13.5 → 12	Iodopharmaceuticals
124 (4.2 d)	¹²⁴ Te(p,n)	12 → 8	Tumor targeting; dosimetry

Conclusions and Perspectives

- Radiochemical method of nuclear data measurement is well established; it is especially suitable for studying softradiation emitting radionuclides
- Nuclear data are of basic significance in cyclotron production of medical radionuclides
- Radionuclide production technology well established. Yet there is constant need of development of other radionuclides.
- Demands on quality assurance are stringent
- Novel PET-radionuclides ⁶⁴Cu, ⁸⁶Y, ¹²⁴I, etc. in great demand.
- Radiotracer research is opening new perspectives
- Interdisciplinary approaches absolutely necessary

Combination of interesting science and useful technology

Appreciation

- Educational Institutions
- Governments (Pakistan, UK, Germany)
- Research Centre Juelich, University of Cologne
- Department Heads, Administrators
- Co-workers, Guest Scientists, Ph.D. Students
- Co-operation Partners
- Funding Agencies
- Family and Friends
- Radiochemistry Group of RSC for Honour and Felicitation

Examples of Thin Sample Preparation

Technique	Sample	Nuclear process studied
	Si ¹⁸ O ₂ on Al	¹⁸ O(p,n) ¹⁸ F
Sedimentation	⁸⁵ RbCl on Cu	⁸⁵ Rb(p,xn) ^{82,83} Sr
	⁹⁴ MoO ₃ on Ni	⁹⁴ Mo(p,n) ^{94m,g} Tc
	⁵⁰ Cr on Au	⁵⁰ Cr(d,n) ⁵¹ Mn
	⁵⁸ Ni on Au	⁵⁸ Ni(p,α) ⁵⁵ Co
Electrolytic deposition	⁶⁴ Ni on Au	⁶⁴ Ni(p,n) ⁶⁴ Cu
Electrolytic deposition	⁶⁸ Zn on Au	⁶⁸ Zn(p,2p) ⁶⁷ Cu
	⁷⁰ Ge on Cu	⁷⁰ Ge(α,n) ⁷³ Se
	¹²⁰ Te on Ti	¹²⁰ Te(p,n) ^{120m,g} l
Electrochemical oxidation	¹⁸ O on Al (as Al ₂ ¹⁸ O ₃)	¹⁸ O(p,n) ¹⁸ F
	³⁸ Ar	³⁸ Ar(p,n) ³⁸ K
Cryogenic handling	⁸² Kr	⁸² Kr(p,n) ^{82m} Rb
	¹²⁴ Xe	¹²⁴ Xe(p,x) ¹²³ I
	τ 2 τζ	

Comparison of Experimental Data with Nuclear Model Calculations

⁴⁶Rb(p,xn)-reactions
Calculation: ALICE-IPPE
Kastleiner et al., RCA 92, 449 (2004).
(Jülich – Cape Town – Obninsk)

¹²²Te(p,xn)-reactions
Calculation: STAPRE
Hohn et al., ARI 49, 93 (1998).
(Jülich – Debrecen)

- (p,xn)-reactions are described well by statistical/precompound model as well as by exciton model
- Isomeric cross section is estimated well by STAPRE

Copper-67

 $T_{\frac{1}{2}} = 2.58 \text{ d}; \beta^{-} = 100\%; E_{\beta^{-}} = 0.58 \text{ MeV}; E_{\gamma} = 184.6 \text{ keV} (48.6\%)$ Nuclear reaction: ⁶⁸Zn(p,2p)⁶⁷Cu Measurements: Interference from ⁶⁷Ga; chemical separation and γ -ray spectrometry mandatory.

Nuclear model calculation: ALICIE-IPPE

Stoll et al., RCA 90, 309

Predictive power of theory for rather complex reactions is limited

Hot Chemical Reactions in a Gas Target

Example: ${}^{14}N(p,\alpha){}^{11}C$ reaction in N₂ gas target

Kinetic energy	Energy loss		
2 MeV	excitation, ionisation		
10 keV	inelastic and elastic collisions		
50 eV	obamical reactions		
0.025 eV	chemical reactions		

Formation of precursors $11C + N_2 \longrightarrow 11CN + N$ $11CN + O_2 \longrightarrow 11CO_2 + NO$ $11C + O_2 \longrightarrow 11CO + NO$ $11CO + O_2 \longrightarrow 11CO_2 + O$

A high current irradiation for 45 min leads mainly to ¹¹CO₂

Gas Targetry

Target:suitable construction material; conical shape; target
dimensions and gas pressure dependent on excitation
function

Example: Production of ${}^{11}CO_2$ via ${}^{14}N(p,\alpha){}^{11}C$ reaction

 Removal of radioactivity by expansion

 Batch yield (13 MeV p, 30 µA, 40min) ≈ 100 GBq

Production of ¹⁸F using a Water Target

Nuclear process: ¹⁸O(p,n)¹⁸F

Batch yield of ¹⁸F⁻_{aq} $E_P = 16 \rightarrow 3 \text{ MeV}$ 15 µA, 2 h 74 GBq (2 Ci)

Purification of ¹⁸F⁻ and Recovery of H₂¹⁸O

- Transfer of irradiated water to an anion-exchange column (AG 1x8)
- Adsorption of ¹⁸F⁻ on the column
- H₂¹⁸O flows through and is recovered for reuse
- Desorption of ¹⁸F⁻ from the column using K₂CO₃

Solid Targetry: Example: Production of ¹²⁴I via the ¹²⁴Te(p,n)-Process

Irradiation Arrangement for Medium Scale Production

 $E_p = 13 \rightarrow 9 \text{ MeV}$ Irradiation: 6 h, 10 μ A

