

Fractionating Hydrocarbons For Hazard and Risk Assessment; Chemical and Biological Analysis

Why do this?

Risk management is the language of business and regulation

Showing we can manage risk instils confidence

Confidence builds trust in stakeholders

Trust supports legitimacy and community buy-in into regeneration – a critical 'quality of life' endpoint for sustainable communities

INTELLIGENT SOLUTIONS

 B – oil extracted from a oilcontaminated clay soil prior to remediation.

A – residual oil remaining after windrow treatment.

C – oil extracted from heavily contaminated peaty soil from a decommissioned oil refinery.

SECOND LINK BIOREMEDIATION PROGRAMME

BIOREM 35

Optimising biopile processes for weathered hydrocarbons within a risk management framework - PROMISE

S. Pollard, F. Coulon, G. Paton, J. Bellarby, K. Semple, G. Risdon, B. Bone, K. Brassington and S. Mitchell.

Figure 6

Analytical schematic recommended for analysing soil contaminated with weathered hydrocarbons.

Table 4

Mean concentration, precision & bias for duplicate samples extraction from each soil matrix

Matrix	Spike concentration mg kg ⁻¹	Mean concentration mg kg ⁻¹	Precision mg kg ⁻¹	Precision % RSD	Bias mg kg- 1	Bias %
Silty soil	0 10000 30000	65 9988 29280	6.8 301 800	10.5 3 2.7	-77 -785	-0.8 -2.6
Clay soil	0 10000 30000	81 10142 30104	22.6 680 2171	27.9 6.7 7.2	61 23	0.6 0.1
Sandy soil	0 10000 30000	9.4 9727 28759	5.8 377 611	61.7 3.9 2.1	-282.4 -1250.4	2.8 4.2
Made ground	0 10000 30000	286 10802 31166	63.5 320 1497	22.2 3 4.8	516 880	5 2.9
	Certified value mg kg-1	Mean concentration mg kg ⁻¹	Precision mg kg ⁻¹	Precision % RSD	Bias mg kg- 1	Bias %
RTC CRMPR	9510	11124	374	3.4	1614	17

Speciation of oil extract (class fractioning)

INTELLIGENT SOLUTIONS

INTELLIGENT SOLUTIONS

Chemical analysis

- Develop a robust analytical procedure for diagnostic tool kit
 - » Complete recovery (low bias)
 - » Good precision (within and between batch)
 - Conform to Environment Agency *mCERTs* performance targets (30% bias, 15% precision)
 - Compatible with UK risk framework (Carbon banding convention(s) and Class fractionation)

• Outputs:

- » Move to ultrasonic sequential solvent extraction with Acetone and hexane
- » Generate high throughput and fast process.
- » scalable
- » Remove evaporative steps
- » Solvent exchange via water partitioning prior to class fractionation

Exposure Assessment

Tolerable daily intake

Hydrocarbon	(μς	TDI _{ora} l g kg⁻¹ bw day⁻¹	')	(TDI _{Inhalation} (μg kg ⁻¹ bw day ⁻¹)							
fractions	EA (2006)	MADEP (2002)	TPHCWG (1997)	EA (2006)	MADEP (2002)	TPHCWG (1997)	or effects					
Aliphatic fractio	ns	/	· · · · · · · · · · · · · · · · · · ·	<i>//</i> /	· · · · · · · · · · · · · · · · · · ·	/						
>C5-C6	60	40	5000	200	60	5250	Neurological					
>C6-C8	2000	40	5000	770	60	5250	Neurological					
>C8-C10	100	100	100	60	60	285						
<u>>C10-C12</u>	100	100	100	60	60	285	Liver, blood					
>C12-C16	100	100	100	60	60	285						
>C16-C35	2000	2000	2000	-	-	-	Liver					
>C35-C44	6000	-	20000	-	-	-						
Aromatic fractic	ons											
>C5-C7	-	-	2	-	-	9	Liver,					
>C7-C8	200	-	200	74	-	115	neurological					
>C8-C10	100	30	40	63	15	60						
>C10-C12	40	30	40	15	15	60	Body weight					
>C12-C16	40	30	40	15	15	60						
>C16-C21	30	30	30	NA	15	-	Kidney					
>C21-C35	12.5	30	30	NA	-	-	Nulley					
>C35-C44	12.5	-	30	NA		-						
Combined Aliph	natic and aroma	tic fractions										
>C44-C70	12.5		30	NA		-						

Typical targets values in petroleum hydrocarboncontaminated soils

Petro	oleum	G / (mg Լ	4C ^a kg⁻¹) JK	SSA (mg ł Uł	Targets organs/ systems or effects		
Hydrocarb	on fractions	Residential without plant uptake	Industrial/ commercial	Residential without plant uptake	Industrial		
	>C5-C6	2.11	95.3	8.79	397	Neurological	
	>C6-C8	5.37	242	17.20	69000	Tearological	
Aliphatic	>C8-C10	1.46	65.9	3.53	11300		
fractions	>C10-C12	8.6	29900	17.49	15700	Liver, blood	
Inactions	>C12-C16	42.1	29900	4888	16800		
	>C16-C35	27600	617000	137957	n.d	Liver	
	>C35-C44	27600	617000	414509	n.d		
	>C5-C7	0.613	26.9	1.85	84	Liver	
	>C7-C8	0.694	30.4	4.12	186	neurological	
	>C8-C10	2.39	107	5.54	250	Ŭ Ŭ	
Anomatic	>C10-C12	14.2	625	29.5	45021	Body weight	
Aromatic	>C12-C16	72.7	12200	148	60650		
nactions	>C16-C21	291	9190	1825	46430	Kidnov	
	>C21-C35	417	9250	2074	46553	Kidney	
	>C35-C44	417	9250	2074	46553		
	>C44-C70	417	9250	2073	46553		

Fugacity approach: Level I and II

- fate drives analysis,
 exposure and performance
- log K_{oil-soil} coefficients
- weathering increases PAH log K_{oil-soil}
- risk = f (availability and toxic response)
- Combination of advective processes and degrading reactions
- •Determination of compounds persistence or residence time

Partitioning behaviour: Fugacity level I

Residence time: Fugacity level II

Distribution of 5 chemicals modelled in soil microcosms where advection and degradation reaction were combined

Remedial Targe	ets Worksheet, R	elease 3.1							
Date of Workbook Is	sue: October 2006								
This worksheet has been Environment Agency 200	n produced in combination v 06).	vith the document 'Reme	edial Targets M	lethodology	: Hydrogeol	ogical risk a	ssessment f	or land co	ntamina
Users of this workshee and policy, in order to	t should always refer to t understand how this pro	he User Manual to the cedure should be app	Remedial Ta lied in an app	orgets Meth propriate c	hodology a context.	nd to releva	ant guidanc	e on UK I	egislati
© Environment Agency,	2006. (Produced by the En	vironment Agency's Scie	ence Group)						
The calculation of equation	ons in this worksheet has b	een independently chec	ked by Entec	(UK) Ltd on	behalf of th	e Environme	nt Agency.		
All rights reserved. You will n	ot modify reverse compile or oth	erwise dis-assemble the wo							
Liability: The Environment Age	ency does not promise that the w	orksheet will provide any pa	rticular facilities o	r functions	(ou must ensu	re that the wor	ksheet meets v	our needs :	and you r
Liability: The Environment Age solely responsible for the con fitness for purpose or perforr that the operation of the work	ancy does not promise that the w npetent use of the worksheet. Y mance of any part of the worksh isheet will be uninterrupted or er	orksheet will provide any pa ou are entirely responsible fo eet. We do not promise that t ror free. You should carry ou	rticular facilities o or the consequence the media will alw ut all necessary v	er functions. Y ces of any us ays be free f irus checks p	You must ensu e of the works from defects, c prior to installing	re that the wor heet and the A omputer viruse g on your com	ksheet meets y gency provide is, software lo outing system.	vour needs a s no warrai cks or other	and you i ity about similar c
Liability: The Environment Age solely responsible for the con fitness for purpose or perforr that the operation of the work IMPORTANT: To	ency does not promise that the w npetent use of the worksheet. Y mance of any part of the worksh sheet will be uninterrupted or er o enable MS Excel	rorksheet will provide any pa ou are entirely responsible fo eet. We do not promise that t ror free. You should carry or WOrksheet, click	rticular facilities o or the consequence the media will alw ut all necessary v Tools, Ad	or functions. Y ces of any us ays be free f irus checks p d - <u>l</u> ns, <i>f</i>	You must ensu ee of the works rom defects, c prior to installing Analysis	re that the wor heet and the A omputer viruse g on your comp Tool Pal	ksheet meets y gency provide is, software lo outing system. c and Ani	rour needs a s no warrai cks or other alysis 7	and you in ity about similar c OOI F
Liability: The Environment Age solely responsible for the con finess for purpose or perforr that the operation of the work IMPORTANT: To	ancy does not promise that the w npetent use of the worksheet. Ys mance of any part of the workshest issheet will be uninterrupted or er one anable MS Excel	rorksheet will provide any pa pu are entirely responsible fo eet. We do not promise that t ror free. You should carry ou Worksheet, click	rticular facilities o or the consequence the media will alw ut all necessary v <u>T</u> ools, Ad	or functions. Y ces of any us ays be free f irus checks p d - <u>l</u> ns, A	You must ensu e of the works rom defects, c prior to installing Analysis	re that the wor heet and the A omputer viruse g on your comp TOOI Pal	ksheet meets y Igency provide is, software lo outing system. K and Ana	vour needs a s no warran cks or other alysis 7	and you n nty about similar c OOI F
Liability: The Environment Age solely responsible for the con finess for purpose or perform that the operation of the work IMPORTANT: To Details to be complete	ency does not promise that the w nopetent use of the worksheet. Y mance of any part of the worksh sheet will be uninterrupted or er penable MS Excel d for each assessment	orksheet will provide any pa pu are entirely responsible fo eet. We do not promise that t for free. You should carry ou worksheet, click	rticular facilities o or the consequence the media will alw ut all necessary v Tools, Ad	or functions. Y ces of any us ays be free f irus checks p d -lns, A	You must ensu e of the works rom defects, c rrior to installin Analysis	re that the wor iheet and the A omputer viruse g on your com Tool Pal	ksheet meets y lgency provide is, software lo outing system. Is and Ana	vour needs as no warrau cks or other alysis 7	and you n nty about similar c OOI F
Liability: The Environment Age solely responsible for the con- fitness for purpose or perfor- that the operation of the work IMPORTANT: To Details to be complete Site Name:	ency does not promise that the winpetent use of the worksheet. Yn mance of any part of the workshest will be uninterrupted or er one anable MS Excel d for each assessment TCF site	orksheet will provide any pa pu are entirely responsible fo eet. We do not promise that t or free. You should carry ou Worksheet, click	riticular facilities o r the consequenc the media will alw ut all necessary v Tools, Ad	or functions. Y ces of any us ays be free f irus checks p d - <u>I</u> ns, A	You must ensu e of the works from defects, c prior to installin Analysis	re that the wor iheet and the A omputer viruse g on your com Tool Pal	ksheet meets y gency provide is, software lo juting system. c and Ani	rour needs a s no warran cks or other alysis 7	and you n nty about similar c
Liability: The Environment Age solely responsible for the con filmess for purpose or perforr that the operation of the work IMPORTANT: To Details to be complete Site Name: Site Address:	ency does not promise that the w nopetent use of the worksheet. Y mance of any part of the worksh hisheet will be uninterrupted or er or enable MS Excel d for each assessment TCE site Aberdeen	orksheet will provide any pa ou are entirely responsible fo zu are et. We do not promise that for free. You should carry or worksheet, click	rticular facilities o r the consequenc the media will alw ut all necessary v <u>T</u> ools, Ad	or functions. Y ces of any us ays be free f irus checks p d <u>-Ins</u> , A	You must ensu e of the works rom defects, c rior to installin Analysis	re that the wor iheet and the A omputer viruse g on your com Tool Pal	ksheet meets y gency provide is, software lo outing system. c and An	rour needs a s no warrau cks or other alysis 7	and you hty about similar o
Liability: The Environment Age solely responsible for the con fitness for purpose or perforr that the operation of the work IMPORTANT: To Details to be complete Site Name: Site Address:	ancy does not promise that the w mpetent use of the worksheet. Y mance of any part of the worksh scheet will be uninterrupted or er o enable MS Excel d for each assessment TCE site Aberdeen	orksheet will provide any pa ou are entirely responsible for etc. We do not promise that for free. You should carry or worksheet, click	rticular facilities o r the consequenc the media will alw ut all necessary v <u>T</u> ools, Ad	or functions. tes of any us ays be free f irus checks p d - <u>I</u> ns, A	You must ensu e of the works rom defects, c rior to installin, Analysis	re that the wor iheet and the A omputer viruse g on your com Tool Pal	ksheet meets y logency provide is, software lo outing system. and An	vour needs a s no warran cks or other alysis 7	and you in hty about similar c
Liability: The Environment Age solely responsible for the con- fitness for purpose or perfor- that the operation of the work IMPORTANT: To Details to be complete Site Name: Site Address: Completed by:	ency does not promise that the w propert use of the worksheet. Y mance of any part of the worksh sheet will be uninterrupted or er or enable MS Excel d for each assessment TCE site Aberdeen LM	orksheet wii provide any pa uare entirely responsible fo eet. We do not promise that for free. You should carry or worksheet, click	rticular facilities o r the consequence the media will alw ut all necessary v Tools, Ad	r functions. 1) czes of any us ays be free f irus checks p d - <u>I</u> ns, <i>I</i>	You must ensu e of the works rom defects, c rrior to installin Analysis	re that the wor iheet and the A omputer viruse g on your com Tool Pal	ksheet meets y gency provide is, software lo uuting system. ∢ and An a	rour needs ; s no warrai cks or other alysis 7	and you hty about similar c

Origin of CT: Specify basis for target concentration

Contaminant

Target Concentration (CT)

TCE

0.01

mg/I

Environmental Standards and DWS values

	EQS/DWS
COC	(µg/l)
Phenols Monohydric	30
Benzene	10
Toluene	10
Ethyl benzene	10
m & p Xylene	10
o Xylene	10
Aliphatics C5-C6	10
Aliphatics >C6-C8	10
Aliphatics >C8-C10	10
Aliphatics >C10-C12	10
Aliphatics >C12-C16	10
Aliphatics >C16-C21	10
Aliphatics >C21-C35	10
Aromatics C6-C7	10
Aromatics >C7-C8	10
Aromatics >EC8-EC10	10
Aromatics >EC10-EC12	10
Aromatics >EC12-EC16	10
Aromatics >EC16-EC21	10
Aromatics >EC21-EC35	10
Naphthalene	10
Benzo(b)fluoranthene	0.10
Benzo(k)fluoranthene	0.10
Benzo(a)pyrene	0.01
Indeno(123cd)pyrene	0.10
Benzo(ghi)perylene	0.10

Bioassays

Microbial

Plants

Biomass
 Respiration
 Nitrification
 Enzyme assays
 lux-based bacteria

Lethal and Sub-lethal Eisenia fetida Lumbricus terrestris Seed Germination Mustard Rye grass Pea

What do we expect to happen

100 Ageing % Bioavailable / Non-Bioavailable / Loss 90 The hydrocarbons will • age and the ■% Bioavailable 80 bioavailability (as a ■% Non-bioavailable function of degradation 70 and toxicity) will change Decreasing 60 Bioavailable Toxicity may increase and 50 • Fraction with then decrease in time 40 association with biodegradation 30 Increasing Non-Bioavailable 20 Field scale validation may • Fraction with respond in parallel 10 time

Arbitrary Time

Soil C

Pre-mixing

Inoculum

Windrow Turning

Windrow Turning

Importance of Irrigation

Routine Monitoring Continues

TPH Degradation- Biopiles

TPH Degradation- Windrows

Remediation Decision Support Tool

- Developed support tool based on 3 tiers, designed to reduce uncertainty in technology selection
- Road tested on genuine scenarios
- The tool assists in the decision making process of remediation technologies:
 - Enabling transparent justification of selection
 - Gives focussed and streamlined support for targeting best options.
 - Interfaces with web to enable continual updating as practices become established and lessons are learned

Predicting Hydrocarbon Remediation?

• Empirical data from thirty sites have been generated & applied to appraise and validate.

BF & Rate of Degradation

UNIVERSITY OF ABERDEEN

80000

Hydrocarbon Validation

Predicting bioremediation of hydrocarbons: Laboratory to field scale

EE Deplock***, D.P. Macdin*, K.S. Nilham**, GJ. Paten**

and and a second s Design the state of the state o

........

A 200 Benefit for All the second

The second seco

(mgCC 1.0 -

spiration

Re

0.8

0.6

0.4

0.2

0.0

1.100000000

top dates and accorded detunes a scientific all the form to and and a set of a spin of a first first of the set of a He spin hitseling as have been high temperature rate and as an an entry temperature and an apartments and a temperature there has an agree to be officiant atomicing the transfer of these of

These this and generates by the order of the start generates of the order of the start of the s

and the second sec

Fig. 3. Decision support tree to make use of derived equations in the assessment of suitability of materials for bioremediation.

Fig. 2. Total measured petroleum hydrocarbon concentration plotted against the maximum measured rate of respiration ((○) >10,000 mg kg⁻¹ (●) < 10,000 mg kg⁻¹).

TPH (mgkg⁻¹)

40000

60000

Fig. 1. Total measured petroleum hydrocarbon concentration plotted against the maximum rate of measured hydrocarbon degradation ((o) >10,000 mg kg⁻¹ (•) <10,000 mg kg⁻¹).

20000

Į

ð a

n

lo ¤

20000

U Ó.

0

OVERVIEW- ORGANISING A SUITABLE MATRIX

UNIVERSITY OF ABERDEEN

TIER 1- *RAPID OVERVIEW WITH LIMITED DATA*

Probability/ Consequence Matrix

			Conseque	Consequence											
		Severe	Medium	Mild	Minor										
	V. Likely	V High Risk	High Risk	Moderate Risk	Moderate/ low risk										
Proba	Likely	High Risk	Moderate Risk	Moderate/ Low Risk	Low risk										
ability	Low Likely	Moderate Risk	Moderate/ Low risk	Low Risk	Very low risk										
	Unlikely	Moderate/ Low Risk	Low risk	Very low risk	Very low risk										

Data Input from Phase 1

Data Input from Tier 1

😓 Public perceptions of nucle 🛛 🗙 📊 Bob G	arrow LinkedIn	× 💽 Old-M	laps - the online rep	oo × 🗅 FlexViews	×	Ð	Ŀ	- 0 ×
 C A Swww.deltacentral3. 	com/clients/re	medios/start/tem	plate_standard	/index.asp				ন্দ্র ২
Online storage & onlin 👯 http://www.later	oom 🚺 Onli	ine Survey Software	Je-S - Home	Oelta Software Soluti	💡 SlideShare »	Web Upl	» 🗀	Other bookmarks
Remedios Remedios Lookups								Logout
Duen outies								
• Properties								
Chemicals of concern at each site of the co	intaminant souri	ce zones						
Zone 1					Run Mod	el Very High	~ €	
			_			_		
	_	Human Rec	eptor	-	Water Rece	eptor		
	Consequence	e Probability Ri	5 K	Consequence	Probability Ri	sk		
Asbestos	Minor 💌	Unlikely 🚩	Very Low	n/a				
Chlorinated solvents	Minor 🛛 💌	Unlikely 🔽	Very Low	Minor 💌	Unlikely 💌	Very Low		
Cyanide	Minor 💌	Unlikely 💌	Very Low	Minor 💌	Unlikely 💌	Very Low		
Gas	Mild 🔽	Likely 🔽	Moderate Lo	∞ n/a				
Metals & Semi-metal	Minor 🛛 💌	Low Like 💌	Very Low	Minor 🕑	Unlikely 💌	Very Low		
Pathogens	Minor 💌	Unlikely 💌	Very Low	Minor 💌	Unlikely 💌	Very Low		
PCBs	Minor 💌	Unlikely 💌	Very Low	Minor 💌	Unlikely 💌	Very Low		
Total Petroleum Hydrocarbons	Severe 💌	Likely 💌	High	Severe 💌	Likely 💌	High		
✓ Water treatment required?		🗹 Gas treat	ment required	? Zon	ne Area 5000	m2		

Output

lic perceptions of nucle 🗙 📊 Bob Garrow	LinkedIn 🛛 🛛 🗙 💽 Old-Maj	ps - the online repo ×	FlexViews	× (+)	
C 🕈 🔇 www.deltacentral3.com/	/clients/remedios/start/templ	late_standard/index.asp			
e storage & onlin <mark></mark> http://www.lateroom Tutal Petroleum Hyurucaruuns Sev	. 👿 Online Survey Software 📲 ere 💌 V. Likely 💌 🚥	Je-S - Home 🧿 Delta Softw very High Sev	vare Soluti 💡 Slides ere 💌 v. Likeiy	hare » Web Upl Ver y High	» 🗀 ot
Uwater treatment required?	🗌 Gas treatm	ent required?	Zone Area <mark>5</mark>	000 m2	
Methods Using Excavation					
	Landfill	Chemical / Physical	Bio - on site		
Asbestos		×	X		
Chlorinated solvents			×		
Cyanide			×		
Gas Matala A. Cawi watal		X	×		
Metals & Semi-metal			X		
Patnogens DCD-			X		
PUBS Total Dataslaum Hudrocarbons			?		
Total Petroleum Hydrocarbons	£756000	£360000	£300000		
Excavation Cost: Methods NOT Using Excavation	Chemical Dhysical	Capping	Ria - an cite		
Asbestos					
Chlorinated solvents	V	X	Ÿ		
Cvanide	×	₩ I	X		
Gas	×	×	×		
Metals & Semi-metal	¥	V	X		
Pathogens	×	· · · · · · · · · · · · · · · · · · ·	X		
PCBs	×	· · · · · · · · · · · · · · · · · · ·	×		
	· ·		``		

TIER 2- SITE SPECIFIC MATCHING OF TECHNIQUES

Which does what?

	A	в	с	D	E	F	G	н	1	J	к	L	м	N	0	Р	Q	B	s	T	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF
3												znil														gravad	luater					
4								ia s	ite								ez situ															
				МИА	biavonting	onhancod biaromodiatian	phytaromodiatian	chemical axidatian and reductian	sloctrakinotic <i>r</i> oparatian	roil fluching	SVE	alidificatian <i>k</i> tabilizatiar	thormal treatment	biaromodiatian	chemical axidatian, ductian 8 dehalaqenatia	roil uarhing/separation	alidification <i>li</i> tabilization	incineration	thormal dorarption	off-rito dirparal	ММА	onhancod biaromodiatian	phytaromodiatian	biarlurpinq	airsparqinq	chomical axidation	dual pharo extraction	thermal treatment	in-uell airztripping	urivofroactivo troatmon uallr	hyricalfchemical (pump 8 treat)	physical barriors
5	OUTHIC	ALC OF CONCERN				•			•			5			2		5					•								ě.	4	
6 7	CHEMIC Quartin suitabili tachnig	ALS OF CONCERN ar that define the lity of the yes to the site																														
· co	CQ1 What is far	o the CoCr that require		i i i i i i i i i i i i i i i i i i i																												
9	romodiatio	an?																														
10 11 12 13			metalr/semirmetalr mana aramaticr,subrituted aramaticr and halaqenated aramaticr ather TPH and LMWPAH HMWPAH	y y y	n y y	y y y	y y y y	n y y	y n n	y y y	n y y	y n n	n y y	n y y	n y y	y y y y	у Р Р	n y y	n y y	y y y y	y y y	y y y p	y y y	n y y	n y y	n y y	n y y	n y y y	n y y	y y y y	y y y y	y y y y
14			MTBE	у	y	у	у	y	n	y	n	n		y	y	n	n	у	y	у	y	у	y		n	y	n .	y	n	У	у	У
15			non-rocalcitrantporticidor, halogonatod phonolr DCD	У	y	у	y	y	n	y	n	n	У	×	y	У	•	У	y	У	y	y	y	У	y	y	У	y	y	У	У	_у
17			r Obr, recalcitrant perticider, albxinr, ruranr chlorinated rolventr	n 	n	n 	y	n 	n	n	n 		n 	n 	y 	n 	n	y 	y 	y 	n 	n 	y 	•	n 	y 	•	n 	n 	y	y	y
18			carban dirulphide	y y		,	,	,		n n	,	0	,	,	,	,	0	,	,	, ,	, ,	,	,	0	,	,	0	,	,	y y	,	,
19			pathagona	'n	n	n	n	n	n	n	n	n		n	n	n	n	y	y	ÿ	'n	n	n	0	n	n	0	n	n	'n	n	n
20			arbortar (Sailanly)	n	n	n	n	n	n	n	n	У	n	n	n	n	у	n	n	У												
21 22 23 24 25	CQ2 r the CaC) matrix/ gr	prorent ar a NAPL in the munduator?	yee na	n y	n y	n y	n y	y y	n y	n y	y y	n y	y y	n y	y y	y y	n y	y y	n y	y y	n y	n y	n y	y y	n y	y y	y y	n y	y y	n y	y y	<u>в</u> У
26 27 28	MATRIE Termr ti specific thir to t appropr	hat dofino the site- matrix and rolate the riatoness of the																														
M	1 Ir the mate	rix capable of supporting																														
29	high bipac	tivity?																														
30			yor DB	y	y	y N	y	y 	y	y 	y 	y 	y 	<i>y</i>	y 	y 	y 	y 	y 	y 	y 	y	y 	y	y 	y 	y	y 	y 	y	y	y
32 33	D. Collector		unknaun (rame arna)	,	n		n	,	,	,	,	,	,	n	,	,	,	,	,	,	,	n	n		,	,	,	,	,	,	,	
34	a biah Kan	ar Kacin the matrix ²																														
35	a man Ka B		yor	y	n	n	n	y	y	y	y	y	y		x	y	y	y	x	y											<u>i an statut</u>	
36			ne	y	y	y	y	ÿ	ÿ	ÿ	ÿ	ÿ	ÿ	y	ÿ	y	y	ÿ	ÿ	y												
37 38	3 Soil only: D	Dofino the texture(r) of c.																														
14 4	▶ ¥ Du	uration Upda	ated and revamped techniq	ues	1	7											14															

Chemicals of Concern

- Visual basic interface
- Multi-pollutant credible
- Considers major processes
- Links to a ranked output

		Technique	Site Specific Applicability	Permisibility	Certainty	Capital Costs	O and M Costs	Market Constraints	Remediation Duration	Environmental Credits	Weighted Score	Rank
		Do nothing	7	6	5	10	10	10	3	5	77.00	3
		Monitor	9	8	5	8	8	10	5	10	96.00	1
		Chemical oxidation	4	8	5	3	8	8	7	4	57.00	9
Soil Sediment		Solidification/ Stabilisation (in situ)	4	9	9	5	8	7	7	8	79.50	2
Bedrock and Sludge	Priority Techniques from	Biopiles	0	8	6	6	6	9	5	8	60.50	7
Treatment	Stare 1	Windrowing	0	8	6	6	6	9	5	8	60.50	7
Technologies	orago	Separartion	4	8	9	4	7	9	6	7	74.50	5
recimologica		Soil washing	3	7	10	3	8	8	7	4	63.00	6
		Solidification/ Stabilisation (ex situ)	6	8	8	4	6	8	6	7	77.00	3
		Landfill cap	0	8	10	2	4	10	8	3	48.00	11
		Excavation and off site	2	8	10	2	4	10	8	3	54.00	10
		Technique	Site Specific Applicability	Permisibility	Certainty	Capital Costs	0 and M Costs	Market Constraints	Remediation Duration	Environmental Credits	Weighted Score	Rank
		Do nothing	6	6	5	10	10	10	3	5	74.00	8
		Monitor	9	8	5	8	8	10	5	10	96.00	2
		Monitored Natural Attenuation	9	8	5	8	8	10	5	10	96.00	2
Groundwater, Surface		Bioslurping	6	8	7	6	5	9	6	7	76.50	6
Water and Leachate	Priority Techniques from	Chemical oxidation		6	8	6	6	9	8	6	74.50	7
Ireatment	Stage 1	Passive/ Reactive Walls	8	8	10	6	8	8	8	8	94.00	4
Technologies		Groundwater Pump and Treat		9	7	5	6	8	7	7	86.00	5
		Physical Barriers	9	8	10	5	9	9	9	8	97.50	1
		Membrane Separation	4	7	6	4	5	5	7	6	60.50	10
		Oxidation	4	7	6	4	6	6	7	6	62.00	9

INTELLIGENT SOLUTIONS

TIER 3- SITE SPECIFIC PROCEDURES WITH REGULATORY ENGAGEMENT

INTELLIGENT SOLUTIONS

Integration of Tiers

• Information in tiers integrated together to form more manageable and aesthetically pleasing interface......the Remediation DST support tool.

CASE STUDIES

What we know and what we need to know

- ✓ The slipway area is impacted with hydrocarbons
- ✓ Contamination starts from 2 m bgl
- \checkmark The area is tidal
- The contamination is within a defined zone
- $\checkmark~$ Limited ability to excavate
- ✓ Over 2000 tonnes of soil has been removed
- ✓ Over 1700 tonnes of water has been treated
- ✓ Phase has been effectively managed

- Biodegradation and partitioning work is well underway
- Unlikely that neighbouring sites contribute to contamination source

		Technique	Site Specific Applicability	Permisibility	Certainty	Capital Costs	O and M Costs	Market Constraints	Remediation Duration	Environmental Credits	Weighted Score	Rank
		Do nothing	7	6	5	10	10	10	3	5	77.00	3
		Monitor	9	8	5	8	8	10	5	10	96.00	1
		Chemical oxidation	4	8	5	3	8	8	7	4	57.00	9
Soil Sediment		Solidification/ Stabilisation (in situ)	4	9	9	5	8	7	7	8	79.50	2
Bedrock and Sludge	Priority Techniques from	Biopiles	0	8	6	6	6	9	5	8	60.50	7
Treatment	Stare 1	Windrowing	0	8	6	6	6	9	5	8	60.50	7
Technologies	orago	Separartion	4	8	9	4	7	9	6	7	74.50	5
recimologica		Soil washing	3	7	10	3	8	8	7	4	63.00	6
		Solidification/ Stabilisation (ex situ)	6	8	8	4	6	8	6	7	77.00	3
		Landfill cap	0	8	10	2	4	10	8	3	48.00	11
		Excavation and off site	2	8	10	2	4	10	8	3	54.00	10
		Technique	Site Specific Applicability	Permisibility	Certainty	Capital Costs	0 and M Costs	Market Constraints	Remediation Duration	Environmental Credits	Weighted Score	Rank
		Do nothing	6	6	5	10	10	10	3	5	74.00	8
		Monitor	9	8	5	8	8	10	5	10	96.00	2
		Monitored Natural Attenuation	9	8	5	8	8	10	5	10	96.00	2
Groundwater, Surface		Bioslurping	6	8	7	6	5	9	6	7	76.50	6
Water and Leachate	Priority Techniques from	Chemical oxidation		6	8	6	6	9	8	6	74.50	7
Ireatment	Stage 1	Passive/ Reactive Walls	8	8	10	6	8	8	8	8	94.00	4
Technologies		Groundwater Pump and Treat		9	7	5	6	8	7	7	86.00	5
		Physical Barriers	9	8	10	5	9	9	9	8	97.50	1
		Membrane Separation	4	7	6	4	5	5	7	6	60.50	10
		Oxidation	4	7	6	4	6	6	7	6	62.00	9

Case Studies DST – Application to Genuine Environment

- A former railway yard, contaminated with an excess of heavy and mid-range hydrocarbons
- DST proposed action: windrow/ biopiling or landfarm
- Actual action: as DST suggested, biopiling was evaluated

- Cement and aggregate provider concerned about the environmental liability associated with a landfill site
- DST proposed action: MNA, windrow/biopile or landfill
- Actual action: as DST suggested, MNA was evaluated.

Case Studies DST – Application to Genuine Environment

- A former metal works facility to be reused for light industry
- DST proposed action: excavation and some complexation agents
- Actual action: as DST suggested

- Cement factory with significant contamination issues and need for "greening"
- DST proposed wide range of actions and these are being systematically developed and applied

- A impacted plume in an urban setting
- DST proposed action: pump and treat through a range of processes
- Actual action as DST

- Former goods yard was grossly hydrocarbon impacted
- DST proposed action: barrier and bioremediation
- Actual action: as DST suggested, MNA was also evaluated.

INTELLIGENT SOLUTIONS

bp

TES

Bretby

PERA

THE INNOVATION COMPANY

8

UNIVERSITY OF ABERDEEN

Thank you for your attention

Engineering and Physical Sciences Research Council