Group | 18 | Melting point | Unknown |
Period | 1 | Boiling point | −268.928°C, −452.07°F, 4.222 K |
Block | s | Density (g cm−3) | 0.000164 |
Atomic number | 2 | Relative atomic mass | 4.003 |
State at 20°C | Gas | Key isotopes | 4He |
Electron configuration | 1s2 | CAS number | 7440-59-7 |
ChemSpider ID | 22423 | ChemSpider is a free chemical structure database |
Image explanation
The image is of the sun because helium gets its name from ‘helios’, the Greek word for the sun. Helium was detected in the sun by its spectral lines many years before it was found on Earth.
Appearance
A colourless, odourless gas that is totally unreactive.
Uses
Helium is used as a cooling medium for the Large Hadron Collider (LHC), and the superconducting magnets in MRI scanners and NMR spectrometers. It is also used to keep satellite instruments cool and was used to cool the liquid oxygen and hydrogen that powered the Apollo space vehicles.
Because of its low density helium is often used to fill decorative balloons, weather balloons and airships. Hydrogen was once used to fill balloons but it is dangerously reactive.
Because it is very unreactive, helium is used to provide an inert protective atmosphere for making fibre optics and semiconductors, and for arc welding. Helium is also used to detect leaks, such as in car air-conditioning systems, and because it diffuses quickly it is used to inflate car airbags after impact.
A mixture of 80% helium and 20% oxygen is used as an artificial atmosphere for deep-sea divers and others working under pressurised conditions.
Helium-neon gas lasers are used to scan barcodes in supermarket checkouts. A new use for helium is a helium-ion microscope that gives better image resolution than a scanning electron microscope.
Biological role
Helium has no known biological role. It is non-toxic.
Natural abundance
After hydrogen, helium is the second most abundant element in the universe. It is present in all stars. It was, and is still being, formed from alpha-particle decay of radioactive elements in the Earth. Some of the helium formed escapes into the atmosphere, which contains about 5 parts per million by volume. This is a dynamic balance, with the low-density helium continually escaping to outer space.
It is uneconomical to extract helium from the air. The major source is natural gas, which can contain up to 7% helium.
In 1868, Pierre J. C. Janssen travelled to India to measure the solar spectrum during a total eclipse and observed a new yellow line which indicated a new element. Joseph Norman Lockyer recorded the same line by observing the sun through London smog and, assuming the new element to be a metal, he named it helium.
In 1882, the Italian Luigi Palmieri found the same line the spectrum of gases emitted by Vesuvius, as did the American William Hillebrand in 1889 when he collected the gas given off by the mineral uraninite (UO2) as it dissolves in acid. However, it was Per Teodor Cleve and Nils Abraham Langer at Uppsala, Sweden, in 1895, who repeated that experiment and confirmed it was helium and measured its atomic weight.
Atomic radius, non-bonded (Å) | 1.400 | Covalent radius (Å) | 0.37 |
Electron affinity (kJ mol−1) | Not stable |
Electronegativity (Pauling scale) |
Unknown |
Ionisation energies (kJ mol−1) |
1st
2372.322
2nd
5250.516
3rd
-
4th
-
5th
-
6th
-
7th
-
8th
-
|
Common oxidation states |
|
||||
Isotopes | Isotope | Atomic mass | Natural abundance (%) | Half life | Mode of decay |
3He | 3.016 | 0.000134 | - | - | |
4He | 4.003 | 99.9999 | - | - |
|
|
Specific heat capacity (J kg−1 K−1) |
5193 | Young's modulus (GPa) | Unknown | |||||||||||
Shear modulus (GPa) | Unknown | Bulk modulus (GPa) | Unknown | |||||||||||
Vapour pressure | ||||||||||||||
Temperature (K) |
|
|||||||||||||
Pressure (Pa) |
|
Listen to Helium Podcast |
Transcript :
Chemistry in its element: helium (Promo) You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry. (End promo) Chris Smith Hello, this week we're almost at the top of the periodic table because we're taking a look at the lighter than air gas helium. But for this chemist a helium filled bobbing balloon is actually a source of pain and not a source of pleasure. Here's Peter Wothers. Peter Wothers We are all familiar with the lighter-than-air gas helium, but whenever I see a balloon floating on a string, I feel a little sad. It's not because I'm a miserable old so-and-so - it's just because, unlike the happy child on the other end of the string, I am aware of the valuable resource that's about to be lost forever. Helium is the second most abundant element in the universe, but here on earth, it's rather rare. Most people guess that we extract helium from the air, but actually we dig it out of the ground. Helium can be found in certain parts of the world, notably in Texas, as a minor component in some sources of natural gas. The interesting thing is how this gas gets into the ground in the first place. Unlike virtually every other atom around us, each atom of helium has been individually formed after the formation of the earth. The helium is formed during the natural radioactive decay of elements such as uranium and thorium. These heavy elements were formed before the earth but they are not stable and very slowly, they decay. One mode of decay for uranium is to emit an alpha-particle. This alpha-particle is actually just the heart of a helium atom - its nucleus. Once it has grabbed a couple of electrons, a helium atom has been born. This decay process for uranium is incredibly slow; the time it takes a given quantity of uranium to halve, its so-called half-life, is comparable to the age of the earth. This means that helium has been continuously generated ever since the earth was formed. Some of the gas might eventually creep through the earth and escape into the atmosphere; fortunately, when conditions are right, some is trapped underground and can be harvested for our use. The situation is very different in space. The sun is comprised of about 75% by mass of hydrogen and 24% of helium. The remaining one percent is made up of all the heavier elements. In the high temperatures of the sun, the hydrogen nuclei are fused together to eventually form helium. This fusion process, whereby heavier atoms are made from lighter ones, liberates vast amounts of energy. Recreating the process on earth may be the answer to our energy problems in the future. Since helium makes up about a quarter of the mass of the sun, it is not surprising that its presence was detected there over 100 years ago. What is perhaps surprising, is that helium was discovered in space 26 years before it was found on earth. It has been known for hundreds of years that certain elements impart characteristic colours to a flame - a fact crucial to the coloured fireworks that we enjoy. Copper, for example, gives a green colour, whereas sodium gives a yellow colour. It is actually possible to identify elements by the careful examination of such coloured flames. The light is split up into a spectrum using a prism or diffraction grating in an instrument called a spectroscope. Rather than seeing a continuous rainbow of colours, a series of sharp coloured lines is formed. This series of lines is characteristic of the particular element and acts as a sort of fingerprint. In the 19th century, scientists turned their spectroscopes to the sun and began to detect certain metals there, including sodium, magnesium, calcium and iron. In 1868 two astronomers, Janssen and Lockyer, independently noticed some very clear lines in the solar spectrum that did not match up to any known metals. While other astronomers of the time were unsure, Lockyer suggested these unidentified lines belonged to a new metal which he named Helium after the Greek personification of the sun, Helios. For over 20 years, no sign of the metal helium was detected on earth and Lockyer began to be mocked for his mythical element. However, in 1895 the chemist William Ramsay detected helium in the gas given out when a radioactive mineral of uranium was treated with acid. The helium formed from the radioactive decay had been trapped in the rock but liberated when the rock was dissolved away in the acid. Finally Lockyer's element had been discovered on earth, but it was no metal, rather an extremely unreactive gas. To this day, helium remains the only non-metal whose name ends with the suffix -ium, an ending otherwise exclusively reserved for metals. Aside from being used to fill balloons, both for our entertainment, and for more serious purposes, such as for weather balloons, helium is used in other applications which depend on its unique properties. Being so light, and yet totally chemically inert, helium can be mixed with oxygen in order to make breathing easier. This mixture, known as heliox, can help save new-born babies with breathing problems, or help underwater divers safely reach the depths of the oceans. At minus 269 degrees centigrade, liquid helium has the lowest boiling point of any substance. Because of this, it is used to provide the low temperatures needed for superconducting magnets, such as those used in most MRI scanners in hospitals. In many facilities where helium is used, it is captured and reused. If it isn't, it escapes into the air. But it doesn't simply accumulate in the atmosphere. Helium is so light that it can escape the pull of the earth's gravitational field and leave our planet forever. This is the fate of the helium in our balloons. Whereas it may be possible to reclaim and recycle other elements that we have used and discarded, when we waste helium, it is lost for good. In 100 years time, people will look back with disbelief that we wasted this precious, unique element by filling up party balloons. Chris Smith Cambridge University's Peter Wothers telling us the tale of element number two, Helium. Next time we're off to 18th century Scotland and an element that was the wrong colour. Richard Van Noorden In 1787, an intriguing mineral came to Edinburgh from a Lead mine in a small village on the shores of Loch Sunart, Argyll. At that time, the stuff was thought to be some sort of Barium compound. Other chemists, such as Edinburgh's Thomas Hope later prepared a number of compounds with the element, noting that it caused the candle's flame to burn red, while Barium compounds gave a green colour. Chris Smith And that's because it wasn't Barium at all, it was Strontium and Richard Van Noorden will be here to explain how, amongst other things, it's shown us that Roman gladiators weren't meat eaters they were in fact vegetarians. That's next week's Chemistry in its Element and I hope you can join us. I'm Chris Smith, thank you for listening and goodbye. (Promo) Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements. (End promo)
|
Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.
Visual Elements images and videos
© Murray Robertson 1998-2017.
W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.
John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.
Derived in part from material provided by the British Geological Survey © NERC.
Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.
Produced by The Naked Scientists.
Created by video journalist Brady Haran working with chemists at The University of Nottingham.
© Murray Robertson 1998-2017.
Data
W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.
Uses and properties
John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.
Supply risk data
Derived in part from material provided by the British Geological Survey © NERC.
History text
Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.
Podcasts
Produced by The Naked Scientists.
Periodic Table of Videos
Created by video journalist Brady Haran working with chemists at The University of Nottingham.