Glossary


Allotropes
Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.


For more information on the Visual Elements image see the Uses and properties section below.

 

Glossary


Group
A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).


Atomic number
The number of protons in an atom.


Electron configuration
The arrangements of electrons above the last (closed shell) noble gas.


Melting point
The temperature at which the solid–liquid phase change occurs.


Boiling point
The temperature at which the liquid–gas phase change occurs.


Sublimation
The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.


Density (g cm−3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.


Relative atomic mass
The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.


Isotopes
Atoms of the same element with different numbers of neutrons.


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.


Fact box

Group 15  Melting point 630.628°C, 1167.13°F, 903.778 K 
Period Boiling point 1587°C, 2889°F, 1860 K 
Block Density (g cm−3) 6.68 
Atomic number 51  Relative atomic mass 121.760  
State at 20°C Solid  Key isotopes 121Sb 
Electron configuration [Kr] 4d105s25p3  CAS number 7440-36-0 
ChemSpider ID 4510681 ChemSpider is a free chemical structure database
 

Glossary


Image explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Appearance

The description of the element in its natural form.


Biological role

The role of the element in humans, animals and plants.


Natural abundance

Where the element is most commonly found in nature, and how it is sourced commercially.

Uses and properties

Image explanation
The symbol is the Eye of Horus, an Ancient Egyptian symbol of protection, royal power and good health. The Ancient Egyptians used antimony sulfide as a mascara.
Appearance
Antimony is a semi-metal. In its metallic form it is silvery, hard and brittle.
Uses
Antimony is used in the electronics industry to make some semiconductor devices, such as infrared detectors and diodes.

It is alloyed with lead or other metals to improve their hardness and strength. A lead-antimony alloy is used in batteries. Other uses of antimony alloys include type metal (in printing presses), bullets and cable sheathing.

Antimony compounds are used to make flame-retardant materials, paints, enamels, glass and pottery.
Biological role
Antimony and many of its compounds are toxic.
Natural abundance
Antimony is not an abundant element but is found in small quantities in over 100 mineral species. It is most often found as antimony(III) sulfide. It is extracted by roasting the antimony(III) sulfide to the oxide, and then reducing with carbon. Antimony can also be found as the native metal.

China produces 88% of the world’s antimony. Other producers are Bolivia, Russia and Tajikistan.
  Help text not available for this section currently

History

Antimony and its compounds were known to the ancients and there is a 5,000-year old antimony vase in the Louvre in Paris. Antimony sulfide (Sb2S3) is mentioned in an Egyptian papyrus of the 16th century BC. The black form of this pigment, which occurs naturally as the mineral stibnite, was used as mascara and known as khol. The most famous user was the temptress Jezebel whose exploits are recorded in the Bible.

Another pigment known to the Chaldean civilization, which flourished in what is now southern Iraq in the 6th and 7th centuries BC, was yellow lead antimonite. This was found in the glaze of ornamental bricks at Babylon and date from the time of Nebuchadnezzar (604–561 BC).

Antimony became widely used in Medieval times, mainly to harden lead for type, although some was taken medicinally as a laxative pill which could be reclaimed and re-used!
 
Glossary

Atomic radius, non-bonded
Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.


Covalent radius
Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.


Electron affinity
The energy released when an electron is added to the neutral atom and a negative ion is formed.


Electronegativity (Pauling scale)
The tendency of an atom to attract electrons towards itself, expressed on a relative scale.


First ionisation energy
The minimum energy required to remove an electron from a neutral atom in its ground state.

Atomic data

Atomic radius, non-bonded (Å) 2.06 Covalent radius (Å) 1.40
Electron affinity (kJ mol−1) 100.924 Electronegativity
(Pauling scale)
2.05
Ionisation energies
(kJ mol−1)
 
1st
830.583
2nd
1604.55
3rd
2441.1
4th
4264.7
5th
5403
6th
10420
7th
-
8th
-
 

Glossary


Common oxidation states

The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.


Isotopes

Atoms of the same element with different numbers of neutrons.


Key for isotopes


Half life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Oxidation states and isotopes

Common oxidation states 5, 3, -3
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  121Sb 120.904 57.21
  123Sb 122.904 42.79
 

Glossary

Data for this section been provided by the British Geological Survey.


Relative supply risk

An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.


Crustal abundance (ppm)

The number of atoms of the element per 1 million atoms of the Earth’s crust.


Recycling rate

The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.


Substitutability

The availability of suitable substitutes for a given commodity.
High = substitution not possible or very difficult.
Medium = substitution is possible but there may be an economic and/or performance impact
Low = substitution is possible with little or no economic and/or performance impact


Production concentration

The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.


Reserve distribution

The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.


Political stability of top producer

A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.


Political stability of top reserve holder

A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.


Supply risk

Relative supply risk 9
Crustal abundance (ppm) 0.2
Recycling rate (%) <10
Substitutability Medium
Production concentration (%) 88
Reserve distribution (%) 53
Top 3 producers
  • 1) China
  • 2) Bolivia
  • 3) Tajikistan
Top 3 reserve holders
  • 1) China
  • 2) Russia
  • 3) Bolivia
Political stability of top producer 24.1
Political stability of top reserve holder 24.1
 

Glossary


Specific heat capacity (J kg−1 K−1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.


Young's modulus

A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus

A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.


Bulk modulus

A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour pressure

A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

Specific heat capacity
(J kg−1 K−1)
207 Young's modulus (GPa) Unknown
Shear modulus (GPa) Unknown Bulk modulus (GPa) 42
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - - - - - - - - -
  Help text not available for this section currently

Podcasts

Listen to Antimony Podcast
Transcript :

Chemistry in its element: antimony


(Promo)

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

(End promo)

Chris Smith

Hello, this week we meet the chemical that's maimed and murdered, but often with the best intentions. To tell the story of the element that can't quite make up its mind if it's a metal or not here's Phil Ball.

Phil Ball

Many wars have been fought over territory, some over pride or love or money. But in the 1600s a long and bitter war was waged over antimony.

What, you might ask, is there to fight about in this apparently unremarkable element, a soft, greyish metal that doesn't even conduct electricity well enough to qualify as a true metal? It has its uses, but they are mundane: as an alloy component of battery electrodes and of pewter, and as a flame retardant.

But at the heart of the Antimony War, which raged in France and Germany throughout much of the seventeenth century, was a more unlikely use of antimony. Some doctors of that age believed that it was a vital ingredient in medicine. The advocates and opponents of this point of view didn't actually take up arms: they fought with pen in hand, sometimes denouncing one another in terms far more vitriolic than we'll find in the academic literature today.

It's very curious that the subject of this dispute should be antimony, because this element is actually rather toxic, causing liver damage in large enough doses. But pharmaceutical uses of antimony have a long history. In the ancient world it was known primarily in the form of its black sulphide ore, called stibnite, which the Greek physician Dioscorides recommended for skin complaints in the first century AD. The Egyptians, meanwhile, used stibnite as a cosmetic, applying it as a form of mascara. They called it kuhl, meaning 'eye-paint', and to the later Islamic alchemical physicians this became al-kohl. From its original meaning of powdered stibnite, this term came to designate any powder, and then a potent extract of any substance. In the early sixteenth century the Swiss alchemical physician Paracelsus called a distilled extract of wine alcool vini, from where we get the modern word alcohol: a long and strange road from eye make-up to intoxicating liquor.

Paracelsus was particularly fond of antimony compounds as medicines. After his death, Paracelsus's chemical medicine was championed by many doctors in Europe, especially in France, and some of these made antimony their most prized remedy. One, a German salt-maker who wrote under the false persona of a fifteenth-century monk called Basil Valentine, published an entire book advertising antimony remedies in 1604 called The Triumphal Chariot of Antimony. Valentine admitted that antimony was poisonous - in fact he offered an apocryphal explanation for the name, saying that it derives from anti-monachos, meaning 'anti-monk' in Latin, because he once unintentionally poisoned several of his fellow monks by adding it secretly to their food in an attempt to improve their health. But he claimed that alchemy could be used to free the metal of its toxic effects and make it "a most salutary Medicine".

The Paracelsian chemical physicians were opposed by traditionalists who preferred the medical theories of the ancient doctors like Hippocrates, based on the idea that our health is controlled by a balance of four humours. This was partly a battle for academic power, but the rival camps were also split along religious and political lines. So there was a lot riding on the struggle, and for a time it crystallized around the medical value of antimony.

The toxicity of antimony can cause vomiting - but to its supporters, this was seen as a good thing. They would administer the salt antimony tartrate as a so-called emetic, a vomit-inducer that was believed to purge the body of other bad substances.

Some doctors continued to prescribe antimony freely after the inconclusive Antimony War, and it has been suggested that a fondness for antimony remedies was what actually killed Mozart in 1791. By the nineteenth century it had become a favourite slow poison for murderers eager to conceal their crimes - a chemical villain almost as notorious as lead.

Chris Smith

But would Mozart have been the maestro that he was without the help of antimony? Well I guess we will never know. Thank you very much to science writer and author Phil Ball. Next week we'll be telling the tale of the element that at one time quite literally kept the world going, but not quite in the way you might think.

John Emsley

The summer of 1618 saw England gripped by drought, but as Henry Wicker walked across Epsom Common he came across a pool of water from which thirsty cattle refused to drink. He found that the water tasted bitter and on evaporation it yielded a salt which had remarkable effects: it acted as a laxative. This became the famous Epsom's salt (magnesium sulfate, MgSO4) and became a treatment for constipation for the next 350 years.

Chris Smith

350 years, certainly sounds like a bad case of constipation. Thankfully John Emsley will be running smoothly through the element with atomic number 12 and that's magnesium in next week's Chemistry in its element, I hope you can join us. I'm Chris Smith, thank you for listening, see you next time.

(Promo)

Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements.

(End promo)
  Help text not available for this section currently
  Help Text

Resources

Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

Visual Elements images and videos
© Murray Robertson 1998-2017.

 

Data

W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.

 

Uses and properties

John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.

 

Supply risk data

Derived in part from material provided by the British Geological Survey © NERC.

 

History text

Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.

 

Podcasts

Produced by The Naked Scientists.

 

Periodic Table of Videos

Created by video journalist Brady Haran working with chemists at The University of Nottingham.