Group | 2 | Melting point | 727°C, 1341°F, 1000 K |
Period | 6 | Boiling point | 1845°C, 3353°F, 2118 K |
Block | s | Density (g cm−3) | 3.62 |
Atomic number | 56 | Relative atomic mass | 137.327 |
State at 20°C | Solid | Key isotopes | 138Ba |
Electron configuration | [Xe] 6s2 | CAS number | 7440-39-3 |
ChemSpider ID | 4511436 | ChemSpider is a free chemical structure database |
Image explanation
The image is based on x-ray radiographs of the human stomach and intestines in patients who have been given a ‘barium meal’.
Appearance
Barium is a soft, silvery metal that rapidly tarnishes in air and reacts with water.
Uses
Barium is not an extensively used element. Most is used in drilling fluids for oil and gas wells. It is also used in paint and in glassmaking.
All barium compounds are toxic; however, barium sulfate is insoluble and so can be safely swallowed. A suspension of barium sulfate is sometimes given to patients suffering from digestive disorders. This is a ‘barium meal’ or ‘barium enema’. Barium is a heavy element and scatters X-rays, so as it passes through the body the stomach and intestines can be distinguished on an X-ray.
Barium carbonate has been used in the past as a rat poison. Barium nitrate gives fireworks a green colour.
Biological role
Barium has no known biological role, although barium sulfate has been found in one particular type of algae. Barium is toxic, as are its water- or acid-soluble compounds.
Natural abundance
Barium occurs only in combination with other elements. The major ores are barite (barium sulfate) and witherite (barium carbonate). Barium metal can be prepared by electrolysis of molten barium chloride, or by heating barium oxide with aluminium powder.
In the early 1600s, Vincenzo Casciarolo, of Bologna, Italy, found some unusual pebbles. If they were heated to redness during the day, they would shine during the night. This was the mineral barite (barium sulfate, BaSO4).
When Bologna stone, as it became known, was investigated by Carl Scheele in 1760s he realised it was the sulfate of an unknown element. Meanwhile a mineralogist, Dr William Withering, had found another curiously heavy mineral in a lead mine in Cumberland which clearly was not a lead ore. He named it witherite; it was later shown to be barium carbonate, BaCO3.
Neither the sulfate nor the carbonate yielded up the metal itself using the conventional process of smelting with carbon. However, Humphry Davy at the Royal Institution in London produced it by the electrolysis of barium hydroxide in 1808.
Atomic radius, non-bonded (Å) | 2.68 | Covalent radius (Å) | 2.06 |
Electron affinity (kJ mol−1) | 13.954 |
Electronegativity (Pauling scale) |
0.89 |
Ionisation energies (kJ mol−1) |
1st
502.849
2nd
965.223
3rd
-
4th
-
5th
-
6th
-
7th
-
8th
-
|
Common oxidation states | 2 | ||||
Isotopes | Isotope | Atomic mass | Natural abundance (%) | Half life | Mode of decay |
130Ba | 129.906 | 0.106 | 2.2 x 1021 y | β+β+ | |
132Ba | 131.905 | 0.101 | 1.3 x 1021 y | EC EC | |
134Ba | 133.905 | 2.417 | - | - | |
135Ba | 134.906 | 6.592 | - | - | |
136Ba | 135.905 | 7.854 | - | - | |
137Ba | 136.906 | 11.232 | - | - | |
138Ba | 137.905 | 71.698 | - | - |
|
|
Specific heat capacity (J kg−1 K−1) |
204 | Young's modulus (GPa) | Unknown | |||||||||||
Shear modulus (GPa) | Unknown | Bulk modulus (GPa) | Unknown | |||||||||||
Vapour pressure | ||||||||||||||
Temperature (K) |
|
|||||||||||||
Pressure (Pa) |
|
Listen to Barium Podcast |
Transcript :
Chemistry in its element: barium (Promo) You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry. (End promo) Chris Smith Hello, this week rat poison, fireworks, fine glass, oil exploration and enemas. Spotted the link yet, well the answer is sitting in the apple green element at the bottom of group two. Adina Payton For many, barium has an unpleasant association. The first thing most people think about when this element is mentioned is the "barium enema" or "barium swallow". Sickly memories often surface of the radiology clinic - where they even ask which flavor you would like strawberry or banana... These "cocktails" consist of a white fluid of barium sulfate that is either "squirted" up one orifice or swallowed down another. It is used to help diagnose diseases and other problems that affect the large intestine or the esophagus. The heavy barium blocks X-rays, causing the filled part of the digestive system to show up clearly on the X-ray picture or CT scan. Barium sulfate can be taken into our body because it is highly insoluble in water, and is eliminated completely from the digestive tract. And if this sounds like an unpleasant experience, it's lucky that it's barium sulfate and not just barium that is used for the exam. Barium is a highly toxic metal. It's extremely poisonous - no one in their right mind would consider consuming it. At low doses, it acts as a muscle stimulant, while higher doses play havoc with the nervous system, causing an irregular heartbeat, tremor, weakness, anxiety, paralysis, and potentially death as the heart and lungs fail. Acute doses of less than 1 gram can be fatal to humans. Indeed barium carbonate is useful as rat poison. Unlike barium sulfate, barium carbonate dissolves in stomach acid, releasing the poisonous barium to do its rather nasty but efficient work. Conveniently barium, which is a soft silvery metallic alkaline earth metal, is never found in nature in its pure form, due to its reactivity with air or in water. In fact the metal is a "getter" in vacuum tubes, meaning it's used to remove the last traces of oxygen. Barium compounds are notable for their high specific gravity - which, in practical terms, means the compounds are extremely heavy. This is true of the most common barium-bearing mineral, its sulfate - barite BaSO4 - is called 'heavy spar' due to the high density (4.5 g/cm³ - the size of a pea). Indeed the name barium comes from the Greek barys, meaning "heavy". Due to its density barium compounds, and especially barite (BaSO4), are extremely important to the petroleum industry. Barite is used in drilling mud, a weighting agent in drilling new oil wells. Barium carbonate also has an application that is more appealing than rat poison - it's used in glassmaking to enhance the luster of the glass. And barite is used in paints, bricks, tiles, glass and rubber production; barium nitrate and chlorate give green colors to fireworks and barium titanate was proposed in 2007 to be used in next generation battery technology for electric cars. Despite the relative high abundance of barium sulfate in nature - it's the 14th most abundant element in earths crust - due to its multiple uses it has a high value, in the range of $55/100grams. Total annual world production is estimated at around 6,000,000 tons. And the main mining areas are the UK, Italy, the Czech Republic, USA and Germany. Total world reserves are estimated to be around 450,000,000 tons. And why am I so particularly interested in this heavy, poisonous element? Well, as a scientist I actually study barite - I separate barite from marine sediments - the mud at the bottom of the sea - and analyze its chemistry which tells us fabulous stories about seawater chemistry and productivity in the geological past. Barite forms in proportion to ocean productivity - the activity of marine phytoplankton the floating "trees" of the ocean which are the base of the marine food chain - and accumulates in marine sediments. The accumulation of barite in ocean sediments can tell us how productive the ocean was at any given time in Earth's history. Barite in contrast to many other minerals is not soluble and is preserved over many millions of years recording the chemistry of the ocean and how it changed over time. And therefore it's a great archive of ocean history. Chris Smith Chemist Adina Payton telling the tale of barium. And talking of what sits at the bottom of the oceans. Steve Mylon "How did it smell?" That was the only question I needed to ask a geologist colleague of mine about the sediment she was trying to understand. The smell of the sediment tells a great deal about the underlying chemistry. Thick black anoxic sediments can be accompanied by a putrid smell which is unique to reduced sulfur. Maybe this is why sulfur has such a bad reputation. My son wouldn't eat eggs for 6 months when he got a smell of his first rotten one. Chris Smith That's the stinky story of sulfur with Steve Mylon on next week's Chemistry in its element, I hope you can join us. I'm Chris Smith, thank you for listening and goodbye. (Promo) Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements. (End promo)
|
Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.
Visual Elements images and videos
© Murray Robertson 1998-2017.
W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.
John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.
Derived in part from material provided by the British Geological Survey © NERC.
Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.
Produced by The Naked Scientists.
Created by video journalist Brady Haran working with chemists at The University of Nottingham.
© Murray Robertson 1998-2017.
Data
W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.
Uses and properties
John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.
Supply risk data
Derived in part from material provided by the British Geological Survey © NERC.
History text
Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.
Podcasts
Produced by The Naked Scientists.
Periodic Table of Videos
Created by video journalist Brady Haran working with chemists at The University of Nottingham.