Group | Actinides | Melting point | 644°C, 1191°F, 917 K |
Period | 7 | Boiling point | 3902°C, 7056°F, 4175 K |
Block | f | Density (g cm−3) | 20.2 |
Atomic number | 93 | Relative atomic mass | [237] |
State at 20°C | Solid | Key isotopes | 237Np |
Electron configuration | [Rn] 5f46d17s2 | CAS number | 7439-99-8 |
ChemSpider ID | 22375 | ChemSpider is a free chemical structure database |
Image explanation
The symbol used is a representation of the trident belonging to the Roman god Neptune.
Appearance
A radioactive metal.
Uses
Neptunium is little used outside research. The isotope neptunium-237 has been used in neutron detectors.
Biological role
Neptunium has no known biological role. It is toxic due to its radioactivity.
Natural abundance
Neptunium is obtained as a by-product from nuclear reactors. It is extracted from the spent uranium fuel rods. Trace quantities occur naturally in uranium ores.
In early 1934, Enrico Fermi in Italy tried to produce elements 93 and 94 by bombarding uranium with neutrons, and claimed success. Ida Tacke-Noddack questioned Fermi’s claim, pointing out he had failed to do a complete analysis, and all that he had found were fission products of uranium. (Fermi had in fact discovered nuclear fission but not realised it.) In 1938, Horia Hulubei and Yvette Cauchois claimed to have discovered element 93, but the claim was also criticised on the grounds that element 93 did not occur naturally.
Neptunium was first made in 1940 by Edwin McMillan and Philip Abelson at Berkeley, California. It came from a uranium target that had been bombarded with slow neutrons and which then emitted unusual beta-rays indicating a new isotope. Abelson proved there was indeed a new element present.
Atomic radius, non-bonded (Å) | 2.39 | Covalent radius (Å) | 1.80 |
Electron affinity (kJ mol−1) | Unknown |
Electronegativity (Pauling scale) |
1.3 |
Ionisation energies (kJ mol−1) |
1st
604.548
2nd
-
3rd
-
4th
-
5th
-
6th
-
7th
-
8th
-
|
Common oxidation states | 6, 5, 4, 3 | ||||
Isotopes | Isotope | Atomic mass | Natural abundance (%) | Half life | Mode of decay |
236Np | 236.047 | - | 1.55 x 105 y | EC | |
- | β- | ||||
237Np | 237.048 | - | 2.14 x 106 y | α | |
1 x 1018 y | sf |
Specific heat capacity (J kg−1 K−1) |
Unknown | Young's modulus (GPa) | Unknown | |||||||||||
Shear modulus (GPa) | Unknown | Bulk modulus (GPa) | Unknown | |||||||||||
Vapour pressure | ||||||||||||||
Temperature (K) |
|
|||||||||||||
Pressure (Pa) |
|
Listen to Neptunium Podcast |
Transcript :
Chemistry in its element: neptunium(Promo) You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry. (End promo) Meera Senthilingam This week, a planetary element that helped create the atomic bomb. Brian Clegg We're so familiar with uranium and plutonium that it's easy to miss that they are named after the seventh and ninth planets of the solar system. (At least, Pluto was the ninth planet until it was stripped of its status in 2006.) Between those planets sits Neptune, and the gap between the two elements leaves a space for their relatively unsung cousin, neptunium - element number 93 in the periodic table. In June 1940, American physicists Edwin McMillan and Philip Abelson, working at the Berkeley Radiation Laboratory, wrote a paper describing a reaction of uranium that had been discovered when bombarding it with neutrons using a cyclotron particle accelerator. Remarkably, the openly published Berkeley paper would show the first step to overcoming one of the biggest obstacles to building an atomic bomb - a paper published when both sides in the Second World War were searching for a solution to the uranium problem. The trouble with uranium was that the isotope uranium 235 needed to build a bomb was incredibly difficult to separate from the much less rare uranium 238. They are chemically identical. But if uranium 238 can be encouraged to absorb a slow neutron in a reactor, it becomes the unstable isotope uranium 239. This undergoes the nuclear reaction called beta decay, where a neutron turns into a proton, giving off an electron in the process (for historical reasons, the electron is called a beta particle in such circumstances). The result of McMillan and Abelson's reaction was the production of a new element, one that had never been seen in nature. By the following year, this element was being called neptunium. But neptunium 239 is also unstable and soon generates another electron, adding a second proton to the nucleus to become plutonium. This was the material that would be used to build the world's first atomic bomb. For our purposes, though, the important thing here is that neptunium had been called into existence. It was third time lucky for using this name for an element. In 1877 a German chemist named Hermann had found what he believed was a new element in the mineral tantalite and called it neptunium. Then in 1886, another German, Clemens Winkler, had isolated what we now call germanium and intended to call this neptunium until he discovered Hermann had used the name first. But Hermann's claim was later proved to be a mistake and the neptunium was free again, ready for McMillan and Abelson to deploy. The real neptunium sits between uranium and plutonium in the actinides, the floating bar on the periodic table that pops out from between radium and lawrencium. A silvery, metallic substance like so many of its neighbours, its most stable form is the isotope neptunium 237 with a half life - the time it takes for half of the original amount to decay - of over 2 million years, and this is the type of neptunium most likely now to be produced as a by product from nuclear reactors. In the original reaction, though, it was neptunium 239 with a half life of just over 2 days that was formed. Although it wasn't spotted until it had already been made in reactors, neptunium does actually exist in a natural form on the earth, when uranium undergoes the process that takes place in a reactor, capturing a neutron from another uranium atom that has split, and emitting a beta particle to transmute it to neptunium - but this only happens in the tiniest quantities. There's much more neptunium to be found in the average household. That's because many smoke detectors use alpha particles from the element americium 241 to ionize the air in a detection chamber. The americium gradually converts to neptunium as it decays, though thanks to americium's 432 year half life, there won't be much produced in the lifetime of a detector. In practice there is very little use for neptunium. The only significant application is in monitors for high energy neutrons, and even here it is rare. In principle, though, it could have a more deadly use. Where the neptunium 239 produced in 1940 was too unstable to use, quickly transforming into plutonium, Neptunium 237 would be just fine to make an atomic bomb. Get enough neptunium 237 together and you've got a nuclear device. The necessary amount to go critical and produce a nuclear explosion is about 60 kilograms. This isn't an impractical quantity. Over 50 tonnes of neptunium is produced as waste from nuclear reactors each year. But neptunium has no particular advantage over plutonium or enriched uranium, so has not been deployed. Even so, because of the risk of it falling into the hands of terrorists or rogue states, neptunium waste has to be treated with the same level of security as the traditional ingredients of atomic bombs. In the end, Neptunium has not proved to be the most useful of elements. When it turns up in a nuclear reactor, or as the end product of the decay of americium in smoke detectors, it is regarded as waste, and it's a particularly long lasting, nasty waste with its immense 2 million year half life. But at least neptunium fans can say that it has a name that trumps even New York. Because neptunium was so good they named it thrice. Meera Senthilingam And so good that it can produce nuclear explosions. That was Brian Clegg with the explosive and long lasting chemistry of neptunium. Now next week an element that likes to avoid the limelight for itself but helps others to get there instead. Simon Cotton There are lots of everyday applications for yttrium compounds. In its compounds yttrium is always present as the yttrium three plus ion, which means that it is colourless and has no unpaired electrons; therefore it does not have any interesting magnetic or spectroscopic properties of its own. The up side of this is that yttrium compounds make very good host materials for other lanthanides. The most familiar application lies in the red phosphor in cathode ray tubes, as used in traditional colour TV sets. Meera Senthilingam And Simon Cotton will be revealing more of the supporting roles of yttrium in next week's Chemistry in its element. Until then I'm Meera Senthilingam and thank you for listening. (Promo) Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements. (End promo)
|
Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.
Visual Elements images and videos
© Murray Robertson 1998-2017.
W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.
John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.
Derived in part from material provided by the British Geological Survey © NERC.
Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.
Produced by The Naked Scientists.
Created by video journalist Brady Haran working with chemists at The University of Nottingham.
© Murray Robertson 1998-2017.
Data
W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.
Uses and properties
John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.
Supply risk data
Derived in part from material provided by the British Geological Survey © NERC.
History text
Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.
Podcasts
Produced by The Naked Scientists.
Periodic Table of Videos
Created by video journalist Brady Haran working with chemists at The University of Nottingham.