Structural diversity of complexes between Cu(II) or Ni(II) and endocyclic oxygen- or nitrogen-containing ligands: Synthesis, X-ray structure determinations and circular dichroism spectra

Marina Fainerman-Melnikova,^a Jack K. Clegg,^a Amalie A. H. Pakchung,^a Paul Jensen^a and Rachel Codd*^{*a,b*}

Electronic Supplementary Information

Crystallography

$\{[(Cu(H_2L^1)(L^5)(OH_2)] \cdot [Cu(L^1)_2]\} \cdot 3H_2O(1)$

 Table S1. Hydrogen Bond Geometry

D	Н	А	D-H(Å)	H-A(Å)	D-A(Å)	DHA (°)
O(1)	H(10)	$O(3W)^{i}$	0.840(12)	1.614(13)	2.4376(15)	166.3(19)
O(4)	H(2O)	$O(4W)^{iii}$	0.832(19)	1.626(19)	2.4515(16)	172(2)
O(1W)	H(3O)	$O(12)^{iii}$	0.77(2)	1.88(2)	2.6524(15)	179(2)
O(1W)	H(4O)	O(2W)	0.81(2)	1.84(2)	2.6393(16)	166.5(19)
O(2W)	H(5O)	$O(5)^{11}$	0.78(2)	1.93(2)	2.6987(16)	171.9(19)
O(2W)	H(6O)	$O(8)^{1}$	0.840(11)	2.118(7)	2.9201(17)	159.6(17)
O(3W)	H(7O)	O(8)	0.79(2)	1.79(2)	2.5697(16)	174(2)
O(3W)	H(8O)	$O(6)^{11}_{.}$	0.78(2)	1.82(2)	2.5938(15)	172(2)
O(4W)	H(9O)	$O(9)^{iv}$	0.76(2)	1.89(2)	2.6309(16)	163(2)
O(4W)	H(10O)	O(7)	0.77(2)	1.94(2)	2.7064(16)	173(2)

Symmetry Operator i –x+1, -y, -z+1 ii -x, y, z iii –x+1, -y+1, -z+1 iv –x+2, y, z

$[Cu_2(HL^1)_2(L^1)(L^6)]$ ·5.5H₂O (2)

Table S2. Hydrogen Bond Geometry

D	Н	А	D-H(Å)	H-A(Å)	D-A(Å)	DHA (°)
O(2)	H(2O)	$O(21)^{iii}$	0.84(3)	1.72(2)	2.555(3)	171(3)
O(10)	H(10O)	$O(4W)^{iv}$	0.84(3)	1.64(3)	2.449(3)	160(4)
O(16)	H(16O)	$O(11)^{vii}$	0.84(3)	1.71(2)	2.546(3)	173(4)
O(24)	H(24O)	$O(2W)^{v}$	0.84(3)	1.69(3)	2.529(3)	173(4)
O(1W)	H(1W)	$O(9W)^{iii}$	0.891(14)	1.834(11)	2.702(3)	164(4)
O(1W)	H(2W)	O(20)	0.89(3)	1.84(3)	2.703(3)	165(4)
O(2W)	H(3W)	$O(12)^{\text{viii}}$	0.89(3)	1.94(2)	2.818(3)	171(3)
O(2W)	H(4W)	$O(3W)^{viii}$	0.89(3)	1.81(3)	2.699(3)	175(3)
O(3W)	H(5W)	$O(1W)^{ii}$	0.89(3)	1.951(17)	2.769(3)	152(3)

O(3W)	H(6W)	O(4)	0.89(3)	1.99(3)	2.867(3)	166(3)
O(4W)	H(7W)	$O(6W)^{ix}$	0.89(3)	1.72(3)	2.601(3)	169(4)
O(4W)	H(8W)	$O(8W)^{x}$	0.89(3)	1.80(3)	2.660(4)	163(4)
O(5W)	H(9W)	$O(14)^{vi}$	0.89(3)	2.06(2)	2.845(3)	146(4)
O(5W)	H(10W)	$O(7)^{ii}$	0.89(3)	2.266(17)	3.105(3)	157(4)
O(6W)	H(11W)	O(22)	0.89(3)	1.838(10)	2.708(3)	165(4)
O(6W)	H(12W)	O(14)	0.89(3)	1.93(2)	2.807(3)	167(4)
O(7W)	H(13W)	O(8)	0.89(3)	1.80(4)	2.678(4)	169(5)
O(7W)	H(14W)	$O(8W)^{xi}$	0.89(3)	2.03(3)	2.910(4)	170(5)
O(8W)	H(15W)	O(5W)	0.89(3)	1.916(16)	2.766(4)	159(4)
O(8W)	H(16W)	$O(7W)^{i}$	0.89(3)	1.853(10)	2.731(4)	168(4)
O(9W)	H(17W)	$O(1W)^{xii}$	0.89(3)	2.05(3)	2.879(3)	156(3)
O(9W)	H(18W)	O(10W) ^{xiii}	0.89(3)	1.95(3)	2.799(4)	159(3)
O(10W)	H(19W)	$O(19)^{ii}$	0.89(3)	2.14(4)	3.008(3)	165(4)
O(10W)	H(20W)	O(4)	0.89(3)	2.00(2)	2.815(3)	151(4)
O(11W)	H(21W)	$O(7W)^{xiv}$	0.89(3)	1.99(5)	2.835(5)	159(6)
O(11W)	H(22W)	$O(14)^{ix}$	0.89(3)	2.34(5)	3.020(4)	133(5)
O(11W)	H(22W)	$O(6W)^{ix}$	0.89(3)	2.63(3)	3.463(4)	156(5)

Symmetry Operators

{[Cu(HL³)(L³)_{0.5}(OH₂)]·1.75H₂O}_n (3)

Table S3. Hydrogen Bond Geometry

D	Н	А	D-H(Å)	H-A(Å)	D-A(Å)	DHA (°)
O(5)	H(10)	$O(10)^{iii}$	0.839(19)	1.76(2)	2.5909(19)	172(3)
O(9)	H(2O)	O(12)	0.870(19)	1.968(9)	2.811(4)	163(3)
O(9)	H(3O)	$O(4)^{vi}$	0.870(13)	1.907(9)	2.7454(18)	161(3)
O(10)	H(4O)	O(4)	0.870(13)	1.949(6)	2.8079(17)	169(3)
O(10)	H(5O)	O(1)	0.868(16)	1.944(16)	2.8113(19)	179(3)
O(10)	H(5O)	O(3)	0.868(16)	2.56(2)	3.0021(19)	112(2)
O(11)	H(6O)	O(9)	0.804(13)	1.812(4)	2.682(4)	179(4)
O(11)	H(7O)	$O(7)^{iv}$	0.870(1)	2.446(2)	2.932(3) 1	15.88(11)
O(11)	H(7O)	$O(7)^{v}$	0.870(1)	2.446(2)	2.932(3) 1	15.88(11)
O(11)	H(7O)	$O(8)^{iv}$	0.870(1)	2.444(5)	3.314(5) 1	80.000(1)
O(11A)	H(6O1)	$O(9)^i$	0.870(1)	1.93(3)	2.771(6)	163(11)
O(11A)	H(6O1)	$O(12)^{iii}$	0.870(1)	2.63(11)	3.059(7)	112(9)
O(11A)	H(701)	$O(7)^{v}$	0.870(1)	2.525(4)	3.015(6)	116.4(4)
O(11A)	H(701)	$O(8)^{iv}$	0.870(1)	2.614(9)	3.322(7)	139.2(6)
O(12)	H(8O)	$O(9)^{ii}$	0.8698(10)	2.25(4)	2.993(4)	143(6)

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

O(12)	H(8O)	$O(12)^{ii}$	0.8698(10)	2.50(6)	3.111(10)	128(6)
O(12)	H(9O)	$O(10)^{vi}$	0.8698(10)	2.07(4)	2.838(4)	147(6)

Symmetry Operators

ⁱ -x, y, -z+1/2 ⁱⁱ -x, -y, -z+1 ⁱⁱⁱ x, -y, z-1/2 ^{iv} -x+1/2, -y+1/2, -z+1 ^v x-1/2, -y+1/2, z-1/2 ^{vi} -x, y, -z+3/2

Specific details:

The O(11) and O(11A) water molecules are disordered over 3 positions with a total occupancy of 1. Their isotropic thermal parameter was refined identically.

${[Cu(L^4)(L^7)]ClO_4}_n(4)$

 Table S4. Hydrogen Bond Geometry

D	Η	А	D-H(Å)	H-A(Å)	D-A(Å)	DHA (°)
N(2)	H(1N)	$O(7)^{i}$	0.88(3)	2.24(3)	3.117(4)	175(3)

Symmetry Operators i x, -y+1/2, z-1/2

$[Cu(L^2)(OH_2)_4)]_n$ (5)

Specific details:

Although the crystals employed in this study appearing (at least visually) to be of good habit and free from imperfections, they proved not to be single and a two component twin, which was resolved using CELL_NOW [Bruker-Nonius (2007), CELL_NOW. Bruker AXS Inc. Madison, Wisconsin, USA], TWINABS [G. M. Sheldrick, *TWINABS: Empirical Absorption and Correction Software, University of Göttingen, Germany*, 1999-2007] and SAINT [Bruker-Nonius, SAINT v.7 Bruker AXS Inc. Madison, Wisconsin, USA, 2007].

 Table S5. Hydrogen Bond Geometry

D	Н	А	D-H(Å)	H-A(Å)	D-A(Å)	DHA (°)
O(7)	H(2O)	$O(1)^{i}$	0.84(2)	1.91(2)	2.748(2)	176(3)
O(7)	H(1O)	$O(3)^i$	0.84(2)	2.60(3)	3.004(2)	111(2)

O(7)	H(1O)	$O(5)^{i}$	0.84(2)	1.88(2)	2.716(2)	178(3)
O(7)	H(1O)	$O(3)^{i}$	0.84(2)	2.60(3)	3.004(2)	111(2)
O(8)	H(4O)	$O(2)^{iv}$	0.84(2))	2.38(3)	2.825(3)	114(3)
O(8)	H(3O)	$O(4)^{ii}$	0.84(2)	2.021(18)	2.787(3)	151(3)
O(9)	H(6O)	O(8)	0.84(2)	1.84(2)	2.669(2)	172(3)
O(9)	H(5O)	$O(5)^{iii}$	0.84(2)	1.78(2)	2.613(2)	172(3)
O(10)	H(8O)	$O(4)^{ii}$	0.84(2)	1.86(2)	2.699(2)	171(3)
O(10)	H(7O)	O(6) ^v	0.84(2)	1.84(3)	2.674(2)	174(3)

Symmetry Operators

ⁱ -x, -y+1, -z ⁱⁱx, y+1, z ⁱⁱⁱ x+1, y, z ^{iv} -x+1, -y+1, -z ^{iv} -x-1, -y+1, -z+1

[Ni(HL²)₂(OH₂)₄)] (6)

Table S6. Hydrogen Bond Geometry

D	Н	А	D-H(Å)	H-A(Å)	D-A(Å)	DHA (°)
O(7)	H(2O)	$O(4)^{i}$	0.74(3)	2.12(3)	2.7808(19)	149(3)
O(7)	H(3O)	$O(2)^{iii}$	0.80(3)	1.89(3)	2.687(2)	173(2)
O(8)	H(4O)	$O(2)^{iv}$	0.79(2)	2.00(3)	2.6939(19)	146(2)
O(8)	H(5O)	$O(7)^{i}$	0.86(3)	1.95(3)	2.7943(19)	168(2)
O(5)	H(10)	$O(6)^{ii}$	0.87(3)	1.84(3)	2.703(2)	171(2)

Symmetry Operator

ⁱ-x+1, -y, -z+1 ⁱⁱx+1, y-1, z ⁱⁱⁱ-x, -y+1, -z+1 ^{iv}-x, -y, -z+1