Catalytic Deuterogenation in D₂O as Deuterium Source with H₂ and HCO₂H as Electron Sources

Yuichiro Himeda^{*a}, Satoru Miyazawa^b, Nobuko Onozawa-Komatsuzaki^a, Takuji Hirose^b, and Kazuyuki Kasuga^a

^a National Institute of Advanced Industrial Science and Technology, Tsukuba Central
5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. ^b Saitama University,
Shimo-ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan

Table of Contents	Page
General considerations	S2
Preparation of rhodium and ruthenium catalysts	S2
General procedure for deuterogenation procedures	S3
Characterization data	S3
Figures	S5
NMR spectra	S7

General considerations

All manipulations were carried out under an argon atmosphere. All aqueous solutions were degassed prior to use. ¹H, ²H and ¹³C NMR spectra were recorded on a Varian INOVA 400 spectrometer using sodium 3-(trimethylsilyl)-1-propionic acid- d_4 (TSP- d_4) as an internal standard. Mass spectra were recorded on Waters ZQ2000 (ESI). Elemental analyses were carried out on an Eager 200 instrument. The reaction solution was analyzed by GC (PEG-HT 5%, Uniport HT 60/80, 2 m packed column, 100 °C) or HPLC (Tosoh TSKgel ODS-100V). FT-IR spectra were recorded on a Perkin Elmer Spectrum One spectrometer. The pH values were measured on an Orion Model 290A pH meter with a glass electrode after calibration to standard buffer solutions. The pD values were corrected by adding 0.4 to the observed values (pD = pH meter reading + 0.4).^{1, 2} The complexes **1-3** were prepared according to the literature procedures.³ D₂O (99.9%) and DCO₂D (95wt%) in D₂O were purchased from Isotec. Research grade H₂ (>99.9999%) was used.

Preparation of rhodium and ruthenium catalysts

[Cp*Rh(H₂L)(H₂O)](SO₄) (4): An aqueous solution (50 mL) of [Cp*RhCl₂]₂ (250 mg, 0.41 mmol) and Ag₂SO₄ (253 mg, 0.82 mmol) was stirred at 40 °C for 12 h. The reaction mixture was filtered to remove insoluble AgCl₂. A 4,4'-dihydroxy-2,2'-bipyridine (154 mg, 0.82 mmol) was added to the filtrate. The solution was stirred at 40 °C for 12 h. The solution was filtered and the volume of the filtrate was reduced to ~5 mL in vacuo. The solution was placed in a refrigerator to give a yellow solid **4** (420 mg, 95%). ¹H NMR (D₂O/KOD): δ 8.28 (d, J = 6.6 Hz, 2H), 7.14 (d, J = 2.5 Hz, 2H), 6.69 (dd, J = 6.6, 2.5 Hz, 2H), 1.56 (s, 15H); ¹³C NMR (D₂O/KOD): δ 8.76 (d, J = 6.4 Hz, 2H), 7.69 (bs, 2H), 7.24 (dd, J = 6.4, 2.4 Hz, 2H), 1.68 (s, 15H); ¹³C NMR (D₂O): δ 170.34, 159.36, 154.92, 118.92, 114.20, 99.62 (d, J_{RhC} = 9.2 Hz), 10.63; IR (KBr): 1621, 1500, 1450, 1111 cm⁻¹; Anal. Calcd for C₂₀H₂₅N₂O₇SRh + 2H₂O: C, 41.67; H, 5.07; N, 4.86; S, 5.56. Found: C, 41.75; H, 5.16; N, 4.88; S, 5.60; ESIMS: *m/z* 425 [M – SO₄ – H₂O – H]⁻.

 $[(C_6Me_6)Ru(H_2L)(H_2O)](SO_4)$: An aqueous solution (50 mL) of $[(C_6Me_6)RuCl_2]_2$ (250 mg, 0.37 mmol) and Ag₂SO₄ (234 mg, 0.75 mmol) was stirred at 40 °C for 12 h. The reaction mixture was filtered to remove insoluble AgCl₂. A 4,4'-dihydroxy-2,2'-bipyridine (142 mg, 0.75 mmol) was added to the filtrate. The

solution was stirred at 40 °C for 12 h. The solution was filtered and the volume of the filtrate was reduced to ~5 mL in vacuo. The solution was placed in a refrigerator to give a yellow solid **5** (333 mg, 59%). ¹H NMR (D₂O/KOD): δ 8.19 (d, *J* = 6.6 Hz, 2H), 7.06 (d, *J* = 2.7 Hz, 2H), 6.64 (dd, *J* = 6.6, 2.7 Hz, 2H), 1.95 (s, 18H); ¹³C NMR (D₂O/KOD): δ 178.68, 159.19, 155.10, 121.08, 115.74, 95.27, 17.39; ¹H NMR (D₂O): δ 8.74 (d, *J* = 6.5 Hz, 2H), 7.59 (d, *J* = 2.5 Hz, 2H), 7.18 (dd, *J* = 6.5, 2.6 Hz, 2H), 2.10 (s, 18H); ¹³C NMR (D₂O): δ 159.8, 156.77, 145.26, 119.07, 114.52, 97.59, 17.74; IR (KBr): 1619, 1494, 1452, 1109 cm⁻¹; Anal. Calcd for C₂₂H₂₈N₂O₇SRu: C, 46.72; H, 4.99; N, 4.95; S, 5.67. Found: C, 46.95; H, 5.27; N, 4.71; S, 5.54; ESIMS: *m/z* 451 [M – SO₄ – H₂O – H]⁻.

General procedure for deuterogenation

A solution of complex in D_2O was added to a solution of substrate in D_2O . The reaction solution was stirred at 50 °C under 1 MPa of H_2 . The yield was analyzed by GC (PEG-HT 5%, Uniport HT 60/80, 2 m packed column, 100 °C) or HPLC (Tosoh TSKgel SCX(H⁺)). The ratios of deuterium incorporation were analyzed by ¹H NMR spectoscopy.

Characterization data

1-Deuteriocyclopentanol: ¹H NMR (D₂O): δ 4.26-4.33 (m, 0.08H), 1.85-1.45 (m, 8.00H); ¹³C NMR (D₂O): δ 76.77, 76.39 (t), 36.96, 25.71.

1-Deuteriocyclohexanol: ¹H NMR (D₂O): δ 3.66-3.57 (m, 0.26H), 1.91-1.80 (m, 1.84H), 1.75-1.62 (m, 1.94H), 1.56-1.48 (m, 1.00H), 1.32-1.04 (m, 4.58H); ¹³C NMR (D₂O): δ 69.49, 69.02 (t), 33.32, 24.10, 22.97.

1-Deuteriocycloheptanol: ¹H NMR (CDCl₃): δ 3.89-3.80 (m, 0.14H), 1.98-1.32 (m, 12.00H); ¹³C NMR (CDCl₃): δ 72.82, 72.33 (t), 37.50, 28.14, 22.64.

2-Deuterio-2-propanol: ¹H NMR (D₂O): δ 4.01 (m, 0.09H), 1.15 (bs, 6.00H); ¹³C NMR (D₂O): δ 67.14, 66.75 (t), 26.46.

2-Deuterio-3-methyl-2-butanol: ¹H NMR (D₂O): δ 3.59 (m, 0.14H), 1.62 (m, 0.89H), 1.11 (bs, 3.00H), 0.87 and 0.86 (two d, 6.03H); ¹³C NMR (D₂O): δ 75.77, 75.30 (t), 36.84, 21.17, 20.18, 20.15.

1-Deuterio-1-phenylethanol: ¹H NMR (CDCl₃): δ 7.40-7.23 (bs, 4.80H included CDCl₃), 4.87 (m, 0.27H), 1.49 (bs, 3.00H); ¹³C NMR (CDCl₃): δ 145.75, 128.50, 127.48, 125.39, 70.41, 69.99 (t), 25.00.

1-Deuterio-1-(4-chlorophenyl)ethanol: ¹H NMR (CDCl₃): δ 7.32-7.28 (bs, 3.81H),

4.87 (m, 0.19H), 1.46 (bs, 3.00H); ¹³C NMR (CDCl₃): δ 144.26, 133.06, 128.59, 126.81, 69.70, 69.29 (t), 25.10.

1-Deuterio-1-(2-chlorophenyl)ethanol: ¹H NMR (CDCl₃): δ 7.60 (dt, *J* = 1.6, 7.6 Hz, 0.98H), 7.34-7.26 (bs, 2.01H), 7.20 (dt, *J* = 1.6, 7.5 Hz, 0.91H), 5.30 (m, 0.13H), 1.49 (bs, 3.00H); ¹³C NMR (CDCl₃): δ 143.02, 131.63, 129.38, 128.39, 127.20, 126.44, 66.94, 66.57 (t), 23.38.

- 1. P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188-190.
- 2. K. Mikkelsen and S. O. Nielsen, J. Phys. Chem., 1960, 64, 632-637.
- Y. Himeda, N. Onozawa-Komatsuzaki, S. Miyazawa, H. Sugihara, T. Hirose and K. Kasuga, *Chem.-Eur. J.*, 2008, 14, 11076-11081.

Figure S1. Proton decoupled ¹³C NMR of methylsuccinic acid from (a) itaconic acid in H_2O , (b) itaconic acid in D_2O , and (c) citraconic acid in D_2O catalyzed by iridium catalyst 1.

Figure S2. ¹H NMR of methylsuccinic acid from reaction with itaconic acid catalyzed by rhodium catalyst **4** using (a) HCO_2H in D_2O , (b) DCO_2H in H_2O .

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

