Enantioselective Construction of Quaternary Carbon Centre Catalysed by Bifunctional Organocatalyst

Tian-Yu Liu,^a Jun Long,^a Bang-Jing Li,^b Lin Jiang,^a Rui Li,^b Yong Wu,^a Li-Sheng Ding^b and Ying-Chun Chen*^a

^a Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; ^b Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

E-mail: ycchenhuaxi@yahoo.com.cn

Supplementary Information

Table of Contents

1. General Methods	S2
2. General procedure for the preparation of bifunctional catalysts	
3. General procedure for asymmetric Michael addition	
4. Synthesis of optically active $\beta^{2,2}$ -amino acid	
5. NMR, HRMS and HPLC spectra of the products	S12-S44

1. General Methods: TLC was performed on glass-backed silica plates. Column chromatography was performed using silica gel (200-300 mesh). ¹H and ¹³C NMR were recorded on Bruker 300 or 400 MHz spectrometers. Chemical shifts were reported in ppm down field from tetramethylsilane with the solvent resonance as the internal standard. ESI-HRMS spectra were recorded on BioTOF instrument of Bruker Daltonics Inc.. Enantiomeric excess was determined by HPLC analysis on Chiralpak AS and OD columns. Commercial grade solvents were dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997).

General procedure for the preparation of bifunctional catalysts¹:

To the N',N'-disubstituted primary amine (2 mmol) in dry DCM (10 mL) was added a solution of aryl isothiocyanate (2.5 mmol) in dry DCM (5 mL). After stirred at room temperature for 2 h, the reaction mixture was concentrated in vacuum. The residue was purified by column chromatography on silica gel (DCM/MeOH) to give the desired tertiary amine-thiourea **1a-1f**.

^N \sim ^{CF₃} **1b**, 90% yield; $[\alpha]_D^{20} = +151.1$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.83 (s, 1H), 8.28 (s, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.86 (s, 2H), 7.76 (t, J = 6.4 Hz, 1H), 7.68 (s, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.36 (s, 1H), 5.81 (br.s, 2H), 5.16-5.11 (m, 2H), 3.16-2.92 (m, 5H), 2.38-2.38 (m, 1H), 1.66-1.41 (m, 2H), 1.29-1.22 (m, 1H), 0.97-0.83 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 180.8, 149.8, 148.4, 139.3, 132.5, 132.2, 131.9, 130.2, 129.5, 127.0, 124.3, 123.4, 122.8, 121.6, 118.8, 118.6, 115.4, 61.5, 48.4, 47.0, 38.8, 27.2, 25.9, 25.5, 24.9, 11.8 ppm; IR (CH₂Cl₂) v 3405, 3247, 2942, 2875, 1622, 1587, 1511, 1472, 1385, 1280, 1184, 1125 cm⁻¹; EI-HRMS: calcd. for C₂₈H₂₆F₆N₄S 564.1782, found 564.1781.

^h \rightarrow ^h \rightarrow ^h \rightarrow ^{cF₃} **1c**, 88% yield; $[\alpha]_D^{20} = -61.8$ (c 0.6, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.68 (d, J = 4.5 Hz, 1H), 8.02 (d, J = 9.3 Hz, 1H), 7.88 (s, 2H), 7.68 (s, 1H), 7.40 (dd, J = 2.6, 9.2Hz, 1H), 7.29 (d, J = 4.4 Hz, 1H), 5.70-5.65 (m, 1H), 5.04 (d, J = 3.9 Hz, 1H), 4.99 (s, 1H), 3.97 (s, 3H), 3.44-3.42 (m, 2H), 3.23 (dd, J = 10.2, 13.5 Hz, 1H), 2.88-2.80 (m, 2H), 2.40-2.31 (m, 1H), 1.76 (br.s, 1H), 1.28-1.24 (m, 1H), 0.96 (br.s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 180.8, 158.3, 147.5, 144.8, 140.3, 139.9, 132.6, 132.1, 131.8, 124.9, 123.4, 122.2, 121.2, 118.5, 115.6, 102.3, 61.2, 55.9, 54.9, 41.6, 38.7, 30.9, 27.1, 25.5 ppm; IR (CH₂Cl₂) v 3249, 2945, 1623, 1590, 1510, 1474, 1384, 1279, 1178, 1134 cm⁻¹; ESI-HRMS: calcd. for C₂₉H₂₈F₆N₄OS+H 595.1961, found 595.1939.

1d, 75% yield; $[\alpha]_D^{20} = -30.4$ (c 2.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 2H), 7.61 (s, 1H), 4.13-4.11 (m, 1H), 2.56 (br.s, 1H), 2.38 (br.s, 7H), 1.97-1.93 (m, 1H), 1.88-1.85 (m, 1H), 1.77-1.75 (m, 1H), 1.34-1.19 (m, 4H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 178.5, 141.5, 132.5, 131.9, 131.1, 125.8, 123.1, 120.2, 118.1, 114.8, 67.3, 56.2, 40.1, 32.8, 24.6, 24.4, 21.8 ppm; IR (CH₂Cl₂) v 3405, 3246, 2940, 2865, 1542, 1474, 1385, 1317, 1279, 1178, 1134, 993, 681 cm⁻¹; ESI-HRMS: calcd. for C₁₇H₂₁F₆N₃S+H, 414.1433, found 414.1443.

1e, 80% yield; $[\alpha]_D^{20} = +125.4$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.70 (s, 2H), 7.67 (s, 1H), 7.29-7.24 (m, 3H), 7.15(br.s, 5H), 7.08-7.06 (m, 2H), 5.33 (br.s, 1H), 3.82 (d, J = 10.8 Hz, 1H), 2.22 (s, 6H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 180.4, 139.6, 139.0, 132.8, 132.1, 131.2, 129.9, 128.5, 128.1, 127.9, 127.8, 125.6, 123.6, 120.2, 118.9, 73.9, 59.4, 40.5 ppm; IR (CH₂Cl₂) v 3447, 2926, 2792,1624, 1509, 1473, 1383, 1279, 1178, 1135, 1043, 958, 886, 700 cm⁻¹; ESI-HRMS: calcd. for C₂₅H₂₃F₆N₃S+H, 512.1590, found 512.1589.

1f, 85% yield; $[\alpha]_D^{20} = +170.5$ (c 0.4, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.07 (s, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 7.30-7.24 (m, 3H), 7.15 (br.s, 5H), 7.08-7.05 (m, 2H), 5.36 (br.s, 1H), 3.76 (d, J = 10.8 Hz, 1H), 2.20 (s, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 180.4, 141.1, 139.6, 131.8, 129.9, 125.5, 128.1, 128.0, 127.9, 127.6, 127.4, 126.6, 125.8, 123.6, 122.2, 74.1, 59.3, 40.7 ppm; IR (CH₂Cl₂) v 3264, 2940, 2871, 2835, 2790, 1521, 1456, 1325, 1162, 1125; ESI-HRMS: calcd. for C₂₄H₂₄F₃N₃S+H 444.1716, found 444.1740.

¹_{CF₃} **1g**, 85% yield; $[\alpha]_D^{20}$ = +85.6 (c 0.27, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.00 (s, 4H), 7.91 (s, 2H), 7.56 (s, 1H), 7.52 (s, 2H), 7.26-7.24 (m, 3H), 7.18 (br.s, 5H), 7.08-7.05 (m, 2H), 5.35 (br.s, 1H), 3.80 (d, *J* = 10.8 Hz, 1H), 2.19 (s, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) 180.8, 142.1, 140.5, 140.0, 139.2, 133.2, 132.8, 132.3, 131.9, 131.3, 129.9, 128.8, 128.2, 128.1, 128.0, 127.4, 125.1, 123.2, 121.9, 121.5, 74.1, 59.2, 40.6 ppm; IR (CH₂Cl₂) v 3385, 2938, 2872, 2792, 1599, 1520, 1475, 1396, 1369, 1280, 1179, 1136 cm⁻¹; ESI-HRMS: calcd. for C₃₉H₂₉F₁₂N₃S+H 800.1963, found 800.1987.

(1) (a) T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672; (b) B.-J. Li, L.

Jiang, M. Liu, Y.-C. Chen, L.-S. Ding and Y. Wu, *Synlett*, 2005, 603; (*c*) J. Ye, D. J. Dixon and P. S. Hynes, *Chem. Commun.*, 2005, 4481; (d) B. Vakulya, S. Varga, A. Csampai and T. Sóos, *Org. Lett.*, 2005, 7, 1967.

General procedure for asymmetric Michael addition

Catalyst **1e** (or **1d**) (0.02 mmol, 20 mol%), vinyl sulfone **3** (or **5**, for α -alkyl cyanoacetates) (0.1 mmol) and 4A MS (20 mg) were stirred in dry toluene (0.5 mL) and cooled to the desired temperature under argon. Then cyanoacetate **2** (0.2 mmol) in dry toluene (0.5 mL) was added. After the stated reaction time, the product was purified by flash chromatography on silica gel (*Previously saturated with cold petroleum ether. In general slightly lower enantioselectivity was obtained when the FC was conducted at room temperature, probably due to the rapid reaction of the unchanged starting materials in column*) to give the addition product **4**. The enantiomeric excess was determined by HPLC analysis on chiral column.

^{so,ph} ^{4a} Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 10/1, $R_f = 0.10$); 83 % yield; $[\alpha]_D^{20} = +28.5$ (c 0.24, CHCl₃) [lit.² $[\alpha]_D^{25} = +31.6$ (c 1.13, CHCl₃), 95% ee]; 94 % ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ 220 nm, t (minor) = 15.31 min, t (major) = 16.55 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.2 Hz, 2H), 7.69 (t, J = 7.2 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 7.45-7.39 (m, 5H), 4.26-4.17 (m, 2H), 3.26 (td, J = 5.2, 13.2 Hz, 1H), 3.03 (td, J = 4.4, 12.8 Hz, 1H), 2.74-2.59 (m, 2H), 1.21 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 138.4, 134.1, 132.6, 129.6, 129.5, 128.0, 125.8, 117.1, 63.8, 52.4, 52.2, 30.9, 13.7 ppm; IR (film) v 3064, 2984, 2935, 1746, 1449, 1321, 1237, 1087 cm⁻¹; ESI-MS: 380.1[M + Na]⁺.

^{4d} Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 12/1, $R_f = 0.10$); 90 % yield; $[\alpha]_D^{20} = +29.2$ (c 0.39, CHCl₃) [lit.² $[\alpha]_D^{25} = +31.9$ (c 1.10, CHCl₃), 94% ee]; 94 % ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ 220 nm, t (minor) = 20.71 min, t (major) = 24.11 min]; ¹H NMR (300 MHz, CDCl₃) δ 7. 89 (d, *J* = 7.0 Hz, 2H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.59 (t, *J* = 7.8 Hz, 2H), 7.38 (br.s, 4H, ArH),

4.24-4.20 (m, 2H), 3.25 (td, J = 4.9, 12.8 Hz, 1H), 3.01 (td, J = 4.3, 12.9 Hz, 1H), 2.77-2.55 (m, 2H), 1.22 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 138.3, 135.8, 134.2, 131.1, 129.7, 129.5, 128.0, 127.3, 116.7, 64.0, 52.0, 51.9, 30.8, 13.7 ppm; IR (KBr) v 3061, 2985, 1747, 1492, 1447, 1328, 1236, 1154 cm⁻¹; ESI-MS: 414.1[M + Na]⁺.

^{4e} Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 15/1, $R_f = 0.12$); 93 % yield; $[\alpha]_D^{20} = +27.6$ (c 0.64, CHCl₃) [lit.² $[\alpha]_D^{25} = +28.8$ (c 1.10, CHCl₃), 94% ee]; 96 % ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ 220 nm, t (minor) = 23.38 min, t (major) = 26.64 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 7.3 Hz, 2H), 7.70 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.9 Hz, 2H), 7.55 (d, J = 6.7 Hz, 2H), 7.32 (d, J = 8.7 Hz, 2H), 4.27-4.20 (m, 2H), 3.25 (td, J = 4.5, 13.1 Hz, 1H), 3.01 (td, J = 4.2, 12.3 Hz, 1H), 2.75-2.58 (m, 2H), 1.22 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 138.3, 134.2, 132.7, 131.7, 129.5, 128.0, 127.5, 123.9, 116.7, 64.0, 52.0, 30.9, 30.7, 13.7ppm; IR (KBr) v 2983, 1746, 1488, 1447, 1328, 1236, 1154 cm⁻¹; ESI-MS: 458.1[M + Na]⁺.

F SO₂Ph

4f Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 10/1, $R_f = 0.12$); 92 % yield; $[α]_D^{20} = +25.1$ (c 0.64, CHCl₃) [lit.² $[α]_D^{25} = +27.2$ (c 1.13, CHCl₃), 94% ee]; 93 % ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ 220 nm, t (minor) = 19.06 min, t (major) = 21.39 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 7.0 Hz, 2H), 7.70 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.2 Hz, 2H), 7.45-7.41 (m, 2H), 7.13-7.07 (m, 2H), 4.24-4.20 (m, 2H), 3.25 (td, J = 4.7, 13.4 Hz, 1H), 3.01 (td, J = 4.0, 12.2 Hz, 1H), 2.71 (td, J = 4.7, 13.8 Hz, 1H), 2.60 (td, J = 4.0, 13.9 Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 163.1 (d, ¹ $J_{C,F} = 248.9$ Hz), 138.5, 134.2, 129.6, 128.5, 128.0, 127.9 (d, ³ $J_{C,F} = 8.5$ Hz), 116.9, 116.6 (d, ² $J_{C,F} = 21.8$ Hz), 63.9, 52.2, 51.9, 30.9, 13.7 ppm; IR (KBr) v 2986, 2925, 1751, 1510, 1447, 1305, 1237, 1088 cm⁻¹; ESI-MS: 398.1 [M + Na]⁺.

F₃C CN COOEt SO₂Ph

⁴⁹ ^{SO₂Ph} Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 10/1, $R_f = 0.10$); 92 % yield; $[\alpha]_D^{20} = +21.8$ (c 0.16, CHCl₃); 91 % ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ 220 nm, t (minor) = 16.48 min, t (major) = 18.21 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.91-7.88 (m, 2H), 7.70-7.66 (m, 4H), 7.62-7.57 (m, 3H), 4.28-4.20 (m, 2H), 3.28 (td, *J* = 4.5, 12.9 Hz, 1H), 3.05 (td, *J* = 4.8, 13.2 Hz, 1H), 2.79 (td, *J* = 4.5, 12.9 Hz, 1H), 2.60 (td, *J* = 4.8, 13.2 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 138.3, 134.3, 134.0, 132.0 (q, *J*_{C,F} = 32.6 Hz), 130.3, 129.6, 129.3, 128.0, 126.5 (d, *J*_{C,F} = 3.2 Hz), 123.3 ((q, *J*_{C,F} = 271.0 Hz), 122.8 (d, *J*_{C,F} = 3.5 Hz), 116.4, 64.2, 52.2, 52.1, 31.0, 13.7 ppm; IR (film) v 3068, 2924, 1747, 1446, 1328, 1237, 1147, 1083 cm⁻¹; ESI-HRMS: calcd. for C₂₀H₁₈F₃NO₄S+Na 448.0801, found 448.0807.

^{4h} Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 9/1, $R_f = 0.10$); 73 % yield; $[\alpha]_D^{20} = +29.0$ (c 0.14, CHCl₃) [lit.² $[\alpha]_D^{25} = +31.0$ (c 1.10, CHCl₃), 93% ee]; 94 % ee, determined by HPLC analysis [Daicel chiralcel AS, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ 220 nm, t (major) = 22.35 min, t (minor) = 29.66 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 7.1 Hz, 2H), 7.69 (t, J = 7.3 Hz, 1H), 7.58 (t, J = 7.8 Hz, 2H), 7.34 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 8.9 Hz, 2H), 4.23-4.18 (m, 2H), 3.81 (s, 3H), 3.23 (td, J = 5.2, 12.2 Hz, 1H), 3.03 (td, J = 4.7, 11.6 Hz, 1H), 2.67-2.60 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 160.3, 138.5, 134.1, 129.5, 128.0, 127.2, 124.4, 117.3, 114.9, 63.7, 55.4, 52.2, 51.8, 30.8, 13.7 ppm; IR (film) v 2981, 1744, 1512, 1307, 1257, 1148 cm⁻¹; ESI-MS: 410.1[M + Na]⁺.

^{PhO₂S} ⁴ⁱ Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 13/1, $R_f = 0.12$); 96% yield; $[\alpha]_D^{20} = +19.0$ (c 0.70, CHCl₃) [lit.² $[\alpha]_D^{25} = +20.2$ (c 1.00, CHCl₃), 93% ee]; 95 % ee, determined by HPLC analysis [Daicel chiralcel AS, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ 220 nm, t (minor) = 19.93 min, t (major) = 21.83 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, *J* = 7.2 Hz, 2H), 7.70 (t, *J* = 7.3 Hz, 1H), 7.59 (t, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 6.8 Hz, 1H), 7.19 (d, J = 3.7 Hz, 1H), 6.99 (t, J = 4.4 Hz, 1H), 4.30-4.23 (m, 2H), 3.27 (td, J = 5.1, 12.5 Hz, 1H), 3.12 (td, J = 4.8, 13.0 Hz, 1H), 2.76 -2.59 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 138.2, 135.0, 134.2, 129.5, 128.0, 127.6, 127.5, 127.2, 116.4, 64.2, 52.0, 49.4, 32.2, 13.7 ppm; IR (film) v 3068, 2984, 2928, 1749, 1447, 1305, 1233, 1087 cm⁻¹; ESI-MS: 386.2 [M + Na]⁺.

COOE -SO₂PI SO₂PI

^{4j} Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 9/1, R_f = 0.12); 96% yield; $[\alpha]_D^{20} = + 12.1$ (c 0.22 ,CHCl₃); 73 % ee, determined by HPLC analysis [Daicel chiralcel AS, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ 220 nm, t (major) = 20.67 min, t (minor) = 27.20 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.91 (m, 4H), 7.73-7.68 (m, 2H), 7.61-7.54 (m, 4H), 4.88 (dd, *J* = 3.6, 5.2 Hz, 1H), 4.35-4.29 (m, 2H), 2.91 (dd, *J* = 5.6, 16.2 Hz, 1H), 2.79 (dd, *J* = 3.6, 16.0 Hz, 1H), 1.66 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.0, 137.2, 136.8, 134.9, 134.8, 130.0, 129.6, 129.3, 129.2, 118.5, 79.8, 63.8, 43.3, 31.8, 24.2, 13.8 ppm; IR (film) v 3067, 2925, 1744, 1449, 1334, 1252, 1160, 1080 cm⁻¹; ESI-HRMS: calcd. for C₂₀H₂₁NO₆S₂+Na 458.0702, found: 458.0703.

^{4k} Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 9/1, $R_f = 0.15$); 98% yield; $[\alpha]_D{}^{20} = + 10.1$ (c 0.47, CHCl₃); 82 % ee, determined by HPLC analysis [Daicel chiralcel AS, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ 220 nm, t (major) = 12.88 min, t (minor) = 17.23 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.92 (m, 4H), 7.73-7.68 (m, 2H), 7.59-7.55 (m, 4H), 4.91 (dd, J = 3.2, 6.0 Hz, 1H), 4.36-4.30 (m, 2H), 2.86 (dd, J = 6.0, 16.2 Hz, 1H), 2.79 (dd, J = 3.6, 16.4 Hz, 1H), 1.96 (td, J = 4.0, 13.2 Hz, 1H), 1.68 (td, J = 4.0, 13.2 Hz, 1H), 1.36 (t, J = 7.2 Hz, 3H), 1.32-1.22 (m, 4H), 0.91 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 167.7, 137.3, 136.8, 134.9, 134.8, 130.1, 129.5, 129.3, 129.1, 117.8, 80.1, 63.6, 49.1, 37.7, 30.7, 27.4, 22.2, 13.8, 13.6 ppm; IR (film) v 3067, 2960, 1742, 1584, 1448, 1334, 1248, 1158, 1079 cm⁻¹; ESI-HRMS: calcd. for C₂₃H₂₇NO₆S₂+Na 500.1172, found 500.1157.

⁴¹ Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 7/1, $R_f = 0.10$); 98% yield; $[\alpha]_D^{20} = +15.9$ (c 0.26, CHCl₃); 72% ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ 220 nm, t (minor) = 10.90 min, t (major) = 13.34 min]; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.2 Hz, 2H), 7.79 (d, J = 7.6 Hz, 2H), 7.72 (t, J = 7.6 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.59 (t, J = 7.6 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.35-7.34 (m, 3H), 7.28-7.26 (m, 2H), 4.92 (dd, J = 2.8, 6.8 Hz, 2H), 4.20 (q, J = 6.8 Hz, 2H), 3.26 (d, J = 14.0 Hz, 1H), 3.06 (d, J = 13.6 Hz, 1H), 2.98 (dd, J = 6.8, 16.2 Hz, 1H), 2.80 (dd, J = 3.2, 16.2 Hz, 1H), 1.19 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃) δ 167.3, 137.2, 134.9, 134.8, 133.1, 130.2, 129.6, 129.4, 129.2, 128.7, 128.2, 117.4, 80.4, 63.6, 53.4, 50.6, 43.6, 30.9, 13.7 ppm; IR (KBr) v 2923, 1752, 1448, 1332, 1080 cm⁻¹; ESI-HRMS: calcd. for C₂₆H₂₅NO₆S₂ +Na 534.1016, found 534.1025.

^{4m} Purified by flash chromatography on silica gel (eluent: petroleum ether/EtOAc = 8/1, R_f = 0.10); 56% yield; $[α]_D^{20} = + 23.5$ (c 0.12, CHCl₃); 96 % ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ 220 nm, t (major) = 15.38 min, t (minor) = 17.54 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.90 (m, 4H), 7.73-7.67 (m, 2H), 7.62-7.54 (m, 4H), 4.92 (dd, *J* = 1.2, 4.8 Hz, 1H), 4.77 (dd, *J* = 2.4, 7.2 Hz, 1H), 4.34-4.24 (m, 2H), 3.75-3.64 (m, 2H), 3.62-3.51 (m, 2H), 2.98 (dd, *J* = 4.0, 16.2 Hz, 1H), 2.81 (dd, *J* = 5.2, 16.4 Hz, 1H), 2.46 (dd, *J* = 7.2, 14.0 Hz, 1H), 2.05-1.99 (m, 1H), 1.27-1.17 (m, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 140.3, 136.6, 134.9, 134.7, 130.2, 129.9, 129.6, 129.2, 128.4, 117.3, 100.2, 79.6, 63.6, 62.3, 45.8, 40.3, 31.2, 29.7, 15.2, 15.0, 13.7 ppm; IR (CH₂Cl₂) v 3448, 3044, 2928, 1744, 1449, 1326, 1148, 1081 cm⁻¹; ESI-HRMS: calcd. for C₂₅H₃₁NO₈S₂+Na 560.1383, found 560.1388.

(2) H. Li, J. Song, X. Liu and L. Deng, J. Am. Chem. Soc., 2005, 127, 8948.

Synthesis of optically active $\beta^{2,2}$ -amino acid 6a and 6b

To a solution of **4a** (35.7 mg, 0.1mmol, 94% ee) in ethanol (10 mL) was added (Boc)₂O 24.0 mg (0.11 mmol) and Raney-Ni 7.2 mg. The mixture was stirred under H₂ (50 psi) at room temperature for 24 h. Then the mixture was filtered through celite, washed with EtOAc (20 mL) and the resulting filtrate was concentrated in vacuum. The residue was subjected to flash chromatography (eluent: petroleum ether/EtOAc = 10/1, R_f = 0.10) to give the Boc-protected $\beta^{2.2}$ -amino ester **6a** 42.4 mg (92% yield). [α]_D²⁰ = -11.0 (c 0.15, CHCl₃); 94% ee, determined by HPLC analysis [Daicel chiralcel AS, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ 220 nm, t (major) = 14.58 min, t (minor) = 19.70 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.2 Hz, 2H), 7.65 (t, *J* = 7.2 Hz, 2H), 7.33-7.25 (m, 3H), 7.12 (d, *J* = 7.2 Hz, 2H), 4.70 (t, *J* = 6.4 Hz, 1H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.73 (dd, *J* = 6.4, 14.0 Hz, 1H), 3.59 (dd, *J* = 6.8, 14.0 Hz, 1H), 3.21-3.11 (m, 2H), 2.47 (td, *J* = 6.0, 13.2 Hz, 1H), 2.36 (td, *J* = 5.2, 12.0 Hz, 1H), 1.38 (s, 9H), 1.21 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 173.5, 155.9, 139.1, 138.1, 133.6, 129.3, 129.0, 128.1, 127.7, 126.3, 79.7, 61.6, 54.6, 52.1, 45.5, 28.3, 26.9, 14.0 ppm; IR (KBr) v 3361, 2981, 1725, 1449, 1308, 1225, 1088 cm⁻¹; ESI-HRMS: calcd. for C₂₄H₃₁NO₆S+Na 484.1764, found 484.1752.

To a solution of **4l** 51.1 mg (0.1mmol, 99% ee) in ethanol (10 mL) was added (Boc)₂O 24.0 mg (0.11 mmol) and Raney-Ni 10.2 mg. The mixture was stirred under H₂ (50 psi) at room temperature for 24 h. The reaction mixture was then filtered through celite, and the resulting filtrate was washed with EtOAc (20 mL) and the filtrate was concentrated in vacuum. The residue was subjected to flash chromatography (eluent: petroleum ether/EtOAc = 12/1 R_f = 0.12) to give the Boc-protected β -amino ester **6b** 57.4 mg (93% yield). [α]_D²⁰ = -15.8 (c 0.12, CHCl₃); 95% ee, determined by HPLC analysis [Daicel chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ 220

nm, t (minor) = 13.25 min, t (major) = 16.54 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.90 (m, 4H), 7.67-7.64 (m, 2H), 7.56-7.51 (m, 4H), 7.27-7.23 (m, 3H), 7.01-6.98 (m, 2H), 5.40 (t, *J* = 4.8 Hz, 1H), 5.04 (br.s, 1H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.33-3.27 (m, 2H), 3.13 (d, *J* = 13.6 Hz, 1H), 2.66-2.60 (m, 2H), 2.49 (dd, *J* = 4.4, 12.0 Hz, 1H), 1.44 (s, 9H), 1.25 (t, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 156.3, 137.7, 137.4, 135.6, 134.5, 134.4, 130.3, 130.0, 129.8, 129.7, 129.0, 128.9, 128.4, 127.0, 78.9, 61.8, 61.2, 49.6, 43.8, 41.7, 29.9, 28.3, 13.9 ppm; IR (CH₂Cl₂) v 3749, 2925, 1713, 1505, 1451, 1250, 1159, 1081 cm⁻¹; ESI-HRMS: calcd. for C₃₁H₃₇NO₈S₂+Na 638.1853, found 638.1824.

NMR, HRMS and HPLC spectra of products

LTWR05011-CDCL3-H1=2005-11-10 Pulse Sequence: s2pul

	(min)	(⊉ *sec)	% Alea	(凶)	Height
1	14.461	18746789	49.55	569784	52.57
2	15.926	19090927	50.45	514152	47.43

	RT (min)	Area (⊉ *sec)	% Area	Height (⊉)	% Height
1	15.310	2401710	3.26	98328	5.52
2	16.552	71187819	96.74	1683655	94.48

	(min)	(∆ *sec)	% Area	(₫)	Height
1	20.527	57402003	49.63	723749	53.32
2	24.669	58258832	50.37	633599	46.68

	RT (min)	Area (⊠∕*sec)	% Area	Height (≌/)	% Height
1	20.713	2226680	2.69	54627	4.33
2	24.105	80608566	97.31	1207327	95.67

	0.70	\$
	0.60	
	0.50	
	0.40	Br SO ₂ Ph
AU	0.30	(+)- 4e 96% ee product catalyzed by 1e
	0.20	
	0.10	3.368
	0.00-	
	L	2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 Minutes

49.53

149314

47.12

2

Peak2

26.730 10016657

	RT (min)	Area (⊠∕*sec)	% Area	Height (⊠)	% Height
1	23.376	1046805	2.02	23291	3.27
2	26.643	50787017	97.98	689097	96.73

	Peak Name	RT (min)	Area (⊉*sec)	% Area	Height (⊠)	% Height
1	Peak1	19.139	42612464	49.95	813693	53.30
2	Peak2	22.086	42701158	50.05	713024	46.70

.

Bruker Daltonics DataAnalysis 3.2 printed: 01/10/2006 10:53:02 AM Page 1 of 1

1	Peak1	16.258	12558626	49.97	321803	52.42
2	Peak2	18.304	12574205	50.03	292102	47.58

	RT (min)	Area (∆/*sec)	% Area	Height (⊉)	% Height
1	16.478	3232717	4.70	98606	6.74
2	18.206	65494007	95.30	1364339	93.26

	RT (min)	Area (Ճ∕*sec)	% Area	Height (⊉)	% Height
1	19.932	620006	2.57	18777	4.23
2	21.833	23509303	97.43	424988	95.77

LTYCH05013 H1 CDC13 2005-11-30 Pulse Sequence: s2pul

LTYH051008& H1 CDC13 2005-12-15 Pulse Sequence: s2pul

Bruker Daltonics DataAnalysis 3.2 printed: 12/15/2005 02:33:05 PM Page 1 of 1

LTY051121b-CDCL3-H1-2005-11-21 Pulse Sequence: s2pul

Bruker Daltonics DataAnalysis 3.2 printed: 11/21/2005 04:10:54 PM Page 1 of 1

	RT (min)	Area (tV *sec)	% Area	Height (îV)	% Height
1	10.861	1064955	13.91	33469	18.61
2	13.387	6592160	86.09	146407	81.39

	RT (min)	Area (17 *sec)	% Area	Height (⊻)	% Height
1	10.901	52516	0.12	2929	0.33
2	13.338	42843418	99.88	874669	99.67

	the second se			
Bruker Daltonics DataAnalysis 3.2	printed:	01/05/2006	05:12:06 PM	Page 1 of 1

	RT (min)	Area (⊠ *sec)	% Area	Height (⊠∕)	% Height
1	15.382	16558104	97.74	434325	97.11
2	17.539	382075	2.26	12941	2.89

	RT (min)	Area (∆∕*sec)	% Area	Height (⊠∕)	% Height
1	13.252	416978	2.79	14742	5.70
2	16.536	14525376	97.21	243814	94.30