A Novel and Efficient Zinc-catalyzed Thioetherification of aryl Halides

Amrutha P Thankachan,^a K S Sindhu,^a K Keerthi Krishnan^a and Gopinathan Anilkumar^a*

School of Chemical Sciences, Mahatma Gandhi University, PD Hills P O., Kottayam INDIA-686 560.

Table of Contents

General Remarks S1
Optimization Reactions S1-S3
Typical Experimental Procedure S4
Compound Characterization Data S4-S8
References S8
¹H and ¹³C Spectra of Compounds S9-S21

1 General Remarks S1

The ligand L-proline was purchased from SRL Pvt. Ltd. India. Et₂Zn and NaO'Bu were purchased from Sigma Aldrich chemical company, USA. Aryl halides and thiols were obtained from Alfa Aesar, United Kingdom. All these reagents were used as such. All solvents used for the reaction were purchased from NICE Chemicals Pvt. Ltd. India and distilled prior to use. The NMR spectra were recorded at 400 (¹H) and 100 (¹³C) MHz respectively on a Bruker-400 MHz NMR spectrometer instrument. The chemical shift values are reported relative to Me₄Si (¹H) and CDCl₃ (¹³C) as internal standards. The value of coupling constant (*J*) is stated in Hertz (Hz). FTIR were recorded on a PerkinElmer Spectrum 400 FT-IR spectrophotometer and are reported in frequency of absorption (cm⁻¹). The mass spectra were recorded on MPHT melting point apparatus and are uncorrected. Thin layer chromatography was carried out using Aluchrosep SilicaGel 60/UV₂₅₄ purchased from S D Fine-Chem. Ltd, India and visualized using either by UV Fluorescence or by Iodine chamber. Column chromatography was performed using silica gel 100-200 mesh purchased from Merck Specialities Pvt. Ltd., India and mixtures of hexane-ethylacetate used for elution.

2 Optimization Reactions S1-S3

1. Screening of Different Zinc-sources^{a)}

2	Zn-powder	nd
3	$Zn(OAc)_2$	nd
4	Et_2Zn	54 %

^{a)} Reaction conditions: aryliodide (1mmol), thiophenol (1.1 mmol), K₂CO₃ (2 equiv.), Zn-source (10 mol %), L-proline (20 mol %), 80 °C, 20 h ^{b)} isolated yield; ^{c)} not detected

2. Effect of the amount of catalyst loading^{a)}

H₃COC	1a	Et ₂ Zn(X mol %) L-Proline (Y mol %) K ₂ CO ₃ (2 equiv.) DME (3 ml) 80 °C, 20 h	H ₃ COC 3a
Entry	Et ₂ Zn (1	mol %) L-proline (mol %)	Yield ^{b)}
1	10	20	54
2	8	16	53
3	6	12	35
4	4	8	19
5	2	4	10

^{a)} Reaction conditions: aryliodide (1mmol), thiophenol (1.1 mmol), K_2CO_3 (2 equiv.), DME (3 ml), 80 °C, 20 h ^{b)} isolated yield

3. Optimization of Solvents, Bases and Temperature^{a)}

H ₃ COC +			Image: HS Et2Zn (8 mol %) L-proline (16 mol %) Base (2 equiv.) Solvent (3 ml) Temp.ºC, 20 h			H ₃ COC 3 a		
Entry	y Base	Solvent	Tempera	ature	Time	Yield ^{b)}		
		(2 equiv.)	(3 ml)	(°C)		(h)	(%)	
	1	K ₂ CO ₃	DME	80		20	54	_
	2	K ₂ CO ₃	THF	80		20	34	
	3	K ₂ CO ₃	CH ₃ CN	80		20	81	
	4	K ₂ CO ₃	DMF	80		20	nd ^{c)}	S2

5	K_2CO_3	t-BuOH	80	20	34
6	K ₂ CO ₃	DMSO	80	20	nd
7	K_2CO_3	toluene	80	20	nd
8	K_2CO_3	1,4-dioxane	80	20	nd
9	Cs ₂ CO ₃	DME	80	20	75
10	NaO'Bu	DME	80	20	64
11	NaH	DME	80	20	62
12	Et ₃ N	DME	80	20	nd
13	K ₃ PO ₄	DME	80	20	14
14	KO ^t Bu	CH ₃ CN	80	20	75
15	NaH	CH ₃ CN	80	20	20
16	Cs ₂ CO ₃	CH ₃ CN	80	20	85
17	NaO'Bu	CH ₃ CN	80	20	95
18	NaO ^t Bu	CH ₃ CN	0	20	nd
19	NaO ^t Bu	CH ₃ CN	rt	20	nd
20	NaO'Bu	CH ₃ CN	125	20	54
21 ^{d)}	NaO'Bu	CH ₃ CN	80	20	43
22 ^{e)}	NaO'Bu	CH ₃ CN	80	20	traces
23	-	CH ₃ CN	80	20	nd
24 ^{f)}	NaO'Bu	CH ₃ CN	80	20	traces
25 ^{g)}	NaO'Bu	CH ₃ CN	80	20	traces

^a) Reaction conditions: aryliodide (1mmol), thiophenol (1.1 mmol), NaO^tBu (2 equiv.), Et₂Zn (8 mol %), L-proline (16 mol %), 80 °C, 20 h. ^b) isolated yield. ^{c)} not detected. ^{d)}1.5 equiv. of NaO^tBu, ^{e)} Absence of Et₂Zn, ^{f)} Absence of L-proline, ^{g)} Absence of inert atmosphere

3 Typical Experimental Procedure S4

Synthesis of 1-(4-phenylsulfanyl-phenyl)-ethanone (3a): A dry sealed tube was charged with 1mmol (246 mg) of 4-iodoacetophenone, 16 mol% of L-proline (18 mg) and 2 equiv. of NaO'Bu (192 mg) under nitrogen. To the above mixture was added 8 mol % of Et_2Zn (1M in hexane, 0.08 ml) and 3 ml of acetonitrile followed by the addition of 1.1 mmol of thiophenol (0.11 ml) under nitrogen. The sealed tube was heated in an oil bath which was preheated to 80 °C and the reaction mixture was stirred under the same conditions for 20 hours. The reaction mixture was then cooled and extracted with ethyl acetate (3 x 15 ml) and the ethyl acetate layer was washed with saturated aqueous NaCl solution. The organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure in a rotary evaporator. The crude residue was purified by column chromatography using EtOAc-hexane as the eluent to get 217 mg (95 %) of the product as a colourless solid. All other products were synthesized by similar procedure.

4 Compound Characterization Data S4-S8

1-(4-Phenylsulfanylphenyl)ethanone;^[1] Chemical Formula: $C_{14}H_{12}OS$; Colourless solid; Yield: 217 mg (95 %); **M. P**: 67 °C (from Hexane); ¹**H NMR** (400 MHz, CDCl₃): δ 7.83(d, J = 8.4 Hz, 2H), 7.51-7.48 (m, 2H), 7.41-7.39 (m, 3H), 7.22 (d, J = 8.4 Hz, 2H), 2.55 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 197.10, 144.92, 134.55, 133.87, 132.16, 129.69, 128.91, 128.79, 127.52, 26.46; **IR** (neat): 3060, 1669, 1555, 1182, 819, 616 cm⁻¹; **HRMS** (QToF): [M+H]⁺ calculated for C₁₄H₁₂OS is 229.0687; found 229.0675

4-Phenylsulfanylbenzonitrile;^[2] Chemical Formula: C₁₃H₉NS; Yellow liquid; Yield:

205 mg (97 %); ¹**H** NMR (400 MHz, CDCl₃): δ 7.52-7.50 (m, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.44-7.41 (m, 3H), 7.17 (d, J = 8.4 Hz, 2H); ¹³**C** NMR (100 MHz, CDCl₃): δ 145.74, 135.07, 134.51, 132.37, 129.92, 129.42, 127.37, 118.81, 108.73; **IR** (neat): 3059, 2225, 821, 747, 616 cm⁻¹; **HRMS** (QToF): [M+H]⁺ calculated for C₁₃H₉NS is 212.0533; found 212.0526

1-Methoxy-4-phenylsulfanylbenzene;^[2] Chemical Formula: $C_{13}H_{12}OS$; Yellow liquid; Yield: 132 mg (61 %); ¹**H NMR** (400 MHz, CDCl₃): δ 7.42 (d, J = 8.8 Hz, 2H), 7.25-7.21 (m, 2H), 7.17-7.13 (m, 3H), 6.90 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H) ; ¹³C **NMR** (100 MHz, CDCl₃): δ 159.83, 138.60, 135.36, 128.92, 128.21, 125.76, 124.22, 114.99, 55.36; **IR** (neat): 3068, 2967, 2887, 816, 658cm⁻¹; **HRMS** (QToF): [M]⁺ calculated for $C_{13}H_{12}OS$ is 216.0609; found 216.0603

1-[4-(4-Methoxyphenylsulfanyl)phenyl]ethanone;^[1] Chemical Formula: C₁₅H₁₄O₂S; Appearance: colourless crystals; **MP**: 40 °C (from Hexane); Yield: 222 mg (86 %); ¹**H NMR** (400 MHz, CDCl₃): δ 7.79 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 2.53 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 197.14, 160.68, 146.89, 136.82, 133.90, 128.80, 125.83, 121.43, 115.38, 55.43, 26.42; **IR** (neat): 3060, 2879, 1672, 1557, 1183, 820, 617 cm⁻¹; **HRMS** (QToF): [M+H]⁺ calculated for C₁₅H₁₄O₂S is 259.0787; found 259.0783

4-Nitrophenyl-4-Methoxysulfide;^[5] Chemical Formula: $C_{13}H_{11}NO_3S$; Appearance: light yellow crystals; MP: 65-67 °C (from Hexane); Yield: 183 mg (70 %); ¹**H NMR** (400 MHz, CDCl₃): δ 8.02 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 161.10, 150.07, 137.13, 132.62, 125.54, 123.92, 115.66, 114.61, 55.45; **IR** (neat): 3001, 2834, 1573, 1334, 821, 622 cm⁻¹; **HRMS** (QToF): [M+H]⁺calculated for $C_{13}H_{11}NO_3S$ is 262.0532; found 262.0539 **S5**

4-(4-Methoxyphenylsulfanyl)benzonitrile;^[6] Chemical Formula: $C_{14}H_{11}NOS$; Appearance: colourless solid; MP: 96-98 °C (from ethylacetate); Yield: 207 mg (86 %); ¹**H** NMR (400 MHz, CDCl₃): δ 7.48-7.43 (m, 4H), 7.08 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 160.98, 147.37, 137.10, 132.25, 126.07, 120.41, 118.95, 115.58, 108.04, 55.45; **IR** (neat): 3084, 2835, 2224, 1079, 812, 649 cm⁻¹; **HRMS** (QToF) [M+H]⁺ calculated for C₁₄H₁₁NOS is 242.0639; found 242.0627

1-(4-TolyIsulfanyIphenyI)ethanone;^[3] Chemical Formula: $C_{15}H_{14}OS$; Appearance: colourless solid; **MP**: 89-91 °C (from Hexane); Yield: 129 mg (53 %); ¹**H NMR** (400 MHz, CDCl₃): δ 7.80 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.23(d, J = 7.6 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 2.54 (s, 3H), 2.39 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 197.16, 145.96, 139.36, 134.51, 134.14, 130.54, 128.83, 127.91, 126.66, 26.45, 21.28; **IR** (neat): 3060, 2879, 1669, 1555, 819, 616 cm⁻¹; **HRMS** (QToF): [M+H]⁺ calculated for C₁₅H₁₄OS is 243.0840; found 243.0844

4-TolyIsulfanyIbenzonitrile;^[4] Chemical Formula: $C_{14}H_{11}NS$ Appearance: colourless solid; **MP**: 100-102 °C (from Hexane); Yield: 146 mg (65 %); ¹**H NMR** (400 MHz, CDCl₃): δ 7.46-7.40 (m, 4H), 7.26 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 2.40 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 139.96, 134.95, 134.83, 132.28, 130.75, 126.81, 126.70, 118.90, 108.30, 21.31; **IR** (neat): 3024, 2923, 2223, 1589, 812, 624 cm^{-1;} **HRMS** (QToF): [M+H]⁺ calculated for $C_{14}H_{11}NS$ is 226.0684; found 226.0683

4-Nitrophenyl-4-tolyl sulfide;^[3] Chemical Formula: C₁₃H₁₁NO₂S; Appearance: light yellow solid; MP: 79-81 °C (from Hexane); Yield: 201mg (82 %); ¹H NMR (400

MHz, CDCl₃): δ 8.06 (d, J = 8.8 Hz, 2H), 7.45(d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.8 Hz, 2H), 7.14 (d, J = 8.8 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.35, 145.16, 140.25, 135.09, 130.87, 126.51, 126.15, 123.99, 21.34; **IR** (neat): 2924, 1506, 1334, 839, 640 cm⁻¹; **HRMS** (QToF): [M+H]⁺ calculated for C₁₃H₁₁NO₂S is 246.0589; found 246.0588

1-[4-(Fluorophenylsulfanyl)phenyl]ethanone;^[7] Chemical Formula: $C_{14}H_{11}FOS$; Appearance: yellow liquid; Yield: 208 mg (85 %); ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 8.4 Hz, 2H), 7.52-7.48 (m, 2H), 7.15-7.09 (m, 4H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.07, 162.03, 145.17, 138.04, 136.56, 136.48, 128.94, 126.83, 117.08, 26.45; **IR** (neat): 3065, 2963, 1678, 1487, 815, 617, 468 cm⁻¹; **HRMS** (QToF) [M+H]⁺ calculated for $C_{14}H_{11}FOS$ is 247.0587; found 247.0589

1-(4-Benzylsulfanylphenyl)ethanone;^[7] Chemical Formula: $C_{15}H_{14}OS$; Appearance: colourless solid; **MP**: 110-112 °C (from Hexane); Yield: 218 mg (90 %); ¹**H NMR** (400 MHz, CDCl₃): δ 7.84 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 6.8 Hz, 2H), 7.32-7.27 (m, 4H), 7.25-7.24 (m, 1H), 4.21 (s, 2H) 2.55 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 197.19, 144.21, 136.26, 134.20, 128.74, 128.70, 127.53, 126.94, 126.81, 37.20, 26.43; **IR** (neat): 3022, 2919, 1675, 1358, 816, 624 cm⁻¹; **HRMS** (QToF): [M+H]⁺ calculated for C₁₅H₁₄OS is 243.0844; found 243.0839

4-Benzylsulfanylbenzonitrile;^[7] Chemical Formula: $C_{14}H_{11}NS$; Appearance: yellow liquid; Yield: 158 mg (70 %); ¹**H NMR** (400 MHz, CDCl₃): δ 7.50 (d, J = 8.4 Hz, 2H), 7.36-7.26 (m, 7H), 4.20 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 144.48, 135.73, 132.22, 128.79, 128.70, 127.71, 127.37, 118.81, 108.60, 37.11; **IR** (neat): 3032, 2876, 2219, 1486, 818, 640 cm⁻¹; **HRMS** (QToF) [M+H]⁺ calculated for C₁₄H₁₁NS is 226.0684; found 226.0680 **S7**

1-(4-Butylsulfanyl-phenyl)ethanone;^[8] Chemical Formula: C₁₂H₁₆OS; Appearance: colourless liquid; Yield: 108 mg (52 %); ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 3.01 (t, J = 7.2 Hz, 2H), 2.56 (s, 3H), 1.70-1.67 (m, 2H), 1.51-1.45 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.08, 145.01, 133.82, 128.74, 126.35, 31.73, 30.85, 26.37, 22.03, 13.61; **IR** (neat): 3032, 2978, 2876, 1678, 1486, 818, 640 cm⁻¹; **HRMS** (QToF) [M+H]⁺ calculated for C₁₂H₁₆OS is 209.0994; found 209.0992

5 References S8

- J. R. C. Antonino, T. García, P. R. Marques, J. A. V. Moya, A. L. Perez, S. S. Al-Deyab, S. I. Al-Resayes, U. Díaz, A. Corma, ACS Catal., 2011, 1, 147
- 2. C. C. Eichmann, J. P. Stambulli, J. Org. Chem., 2009, 74, 4005
- 3. D. J. C. Prasad, G. Sekhar, Org. Lett., 2011, 13, 1008
- 4. Law, H. Gao, J. Am. Chem. Soc., 1930, 52, 3623
- 5. Ariswa, Mieko, J. Am. Chem. Soc., 2008, 4, 640
- 6. S. Kov'acs and Z. Nov'ak, Org. Biomol. Chem., 2011, 9, 711
- P. Guan, C. Cao, Y. Liu, Y. Li, P. He, Q. Chen, G. Liu, Y. Shi, *Tetra. Lett.*, 2012, 53, 5987
- 8. H. Zhang, W. Cao, D. Ma, Synth. Commun., 2007, 37, 25

72.011 72.993 72.993 72.555 71.688 71.688 71.670 71.670 71.670 71.639 71.639 71.639 71.639 71.639 71.639 71.639 71.657 71.657 71.659

