## Supporting Information

## Functionalization of BaTiO<sub>3</sub> Nanoparticles with Electron Insulating and Conducting Organophosphazene-based Hybrid Materials

George S. Pappas<sup>1</sup>, Chaoying Wan<sup>1\*</sup>, Chris Bowen<sup>2</sup>, David M. Haddleton<sup>3</sup>, Xiaobin Huang<sup>4</sup>

<sup>1</sup>International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, CV4 7AL, UK, <sup>2</sup>Materials and Structures Centre, Department of Mechanical Engineering, University of Bath, BA2 7AY, UK, <sup>3</sup>Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK, <sup>4</sup> School of Aeronautics and Astronautics, Shanghai Jiao Tong University, 200240, P. R. China

| Sample name<br>[Shell@Core]  | BaTiO <sub>3</sub> to<br>monomers<br>weight ratio | BPS<br>(mg/ml) | HCCP<br>(mg/ml) | BaTiO <sub>3</sub><br>(mg/ml) |
|------------------------------|---------------------------------------------------|----------------|-----------------|-------------------------------|
| OPZ@BaTiO <sub>3</sub> -0.25 | 0.25:1                                            | 0.81           | 0.36            | 4.65                          |
| OPZ@BaTiO <sub>3</sub> -0.5  | 0.5:1                                             | 1.45           | 0.64            | 4.15                          |
| OPZ@BaTiO <sub>3</sub> -1    | 1.33:1                                            | 1.39           | 0.61            | 1.50                          |
| OPZ@ BaTiO <sub>3</sub> -4   | 4:1                                               | 4.17           | 1.83            | 1.50                          |
| OPZ nanospheres              | -                                                 | 1.13           | 2.57            | -                             |

Table S1. Concentrations of BPS, HCCP and BaTiO<sub>3</sub> for forming OPZ@BaTiO<sub>3</sub>

Table S2. Weight percentages as calculated from EDS analysis.

|                              | С        | 0    | S   | Р   | N   | Cl  | Ba   | Ti   |
|------------------------------|----------|------|-----|-----|-----|-----|------|------|
| Sample                       | weight % |      |     |     |     |     |      |      |
| OPZ@BaTiO <sub>3</sub> -0.25 | 9.4      | 19.2 | 1.0 | 1.3 | 0.3 | 0.5 | 51.0 | 17.3 |
| OPZ@BaTiO <sub>3</sub> -0.5  | 20.0     | 25.5 | 1.8 | 2.1 | 0.5 | 0.6 | 39.1 | 13.5 |
| OPZ@BaTiO <sub>3</sub> -1    | 25.1     | 31.9 | 2.1 | 2.8 | 1.4 | 1.3 | 26.5 | 8.9  |
| OPZ@BaTiO <sub>3</sub> -4    | 36.0     | 18.5 | 4.1 | 4.6 | 3.8 | 1.3 | 24.6 | 7.0  |
| C@BaTiO <sub>3</sub> -0.25   | 2.7      | 6.7  | 0.3 | 1.3 | 0.1 | 0.2 | 65.5 | 23.4 |
| C@BaTiO <sub>3</sub> -0.5    | 4.8      | 6.6  | 0.3 | 1.2 | 0   | 0.2 | 56.5 | 20.3 |
| C@BaTiO <sub>3</sub> -1      | 29.0     | 16.7 | 1   | 5.5 | 0.4 | 0   | 36.0 | 10.7 |
| C@BaTiO <sub>3</sub> -4      | 54.6     | 14.0 | 2.1 | 8.5 | 4.1 | 0   | 12.6 | 4.1  |



**Figure S1.** TGA curves under air of the a)  $OPZ@BaTiO_3$  the bare  $BaTiO_3$  nanoparticles and b)  $C@BaTiO_3$ . The mass loss was calculated at the range 120-700°C.



**Figure S2**. TEM-EDX elemental mapping of the OPZ@BaTiO<sub>3</sub>-4 a) individual mapping of all the elements and the overlay mapping of the Ba (core) and P (shell).



Figure S3. a) TEM micrograph of the C@BaTiO<sub>3</sub>-1 and b) the corresponding SAED pattern.



**Figure S4.** Characteristic Raman spectra of a) OPZs@ BaTiO<sub>3</sub>-1 and b) C@ BaTiO<sub>3</sub>-1, Raman spectra of the OPZ@BaTiO<sub>3</sub> highlighting the presence of the tetragonal structure of BaTiO<sub>3</sub>.



Figure S5. XRD patterns of BaTiO<sub>3</sub>, OPZ@BaTiO<sub>3</sub> and C@BaTiO<sub>3</sub>.



Figure S6. Representative a)  $N_2$  adsorption-desorption isotherms of the core-shell particles before and after carbonization and b) pore size distribution of the C@BaTiO<sub>3</sub> samples based on NLDFT calculation.

| Samnle name                  | Specific     | Micropore |  |  |
|------------------------------|--------------|-----------|--|--|
| [Shell@Core]                 | surface area | area      |  |  |
|                              | $m^2/g$      | m²/g      |  |  |
| OPZ@BaTiO <sub>3</sub> -0.25 | 34           | 0         |  |  |
| OPZ@BaTiO <sub>3</sub> -0.5  | 19           | 0         |  |  |
| OPZ@BaTiO <sub>3</sub> -1    | 10           | 0         |  |  |
| OPZ@BaTiO <sub>3</sub> -4    | 9            | 0         |  |  |
| C@BaTiO <sub>3</sub> -0.25   | 34           | 5         |  |  |
| C@BaTiO <sub>3</sub> -0.5    | 65           | 13        |  |  |
| C@BaTiO <sub>3</sub> -1      | 105          | 21        |  |  |
| C@BaTiO <sub>3</sub> -4      | 183          | 153       |  |  |

Table S3. Textural properties of the samples calculated from  $N_{\rm 2}$  sorption isotherms

Table S4. Percentage atomic concetrations as calculated from high resolution XPS analysis

|                           | <i>C</i> 1 <i>s</i> | 0 ls  | S 2p | Р 2р | N 1s | Cl 2p | Ba 3d | Ti 2p |
|---------------------------|---------------------|-------|------|------|------|-------|-------|-------|
| Sample                    | atomic %            |       |      |      |      |       |       |       |
| OPZ@BaTiO <sub>3</sub> -1 | 63.05               | 21.94 | 5.13 | 5.81 | 3.72 | 0.58  | 0.34  | 0.37  |
| OPZ@BaTiO <sub>3</sub> -4 | 63.12               | 21.30 | 5.16 | 5.24 | 4.37 | 0.81  | -     | -     |
| $C@BaTiO_3-1$             | 82.43               | 10.59 | 0.89 | 2.21 | 1.82 | -     | 1.71  | 0.35  |
| C@BaTiO <sub>3</sub> -4   | 82.93               | 9.86  | 1.24 | 3.01 | 2.69 | -     | 0.28  | -     |



**Figure S7**. Core-level XPS scanning and deconvolution of the peaks of the core-shell particles before and after carbonization.



**Figure S8**. BaTiO<sub>3</sub> XPS core-level spectra of a) C 1s, b) Ba  $3d_{5/2}$  and c) O 1s indicating the presence of BaCO<sub>3</sub>