Supplementary Information

Highly thermally conductive and electrically insulating polymer nanocomposites with boron nitride nanosheet/ionic liquid complexes

Takuya Morishita* and Naoko Takahashi

Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan

*Corresponding author. E-mail: <u>morishita-t@mosk.tytlabs.co.jp</u>

Contents:

1.	Preparation of boron nitride nanosheet (BNNS)/ionic liquid (IL)/polycarbonate (PC)	
co	mposite films	S-2
2.	Preparation of hexagonal boron nitride (h-BN)/poly(methyl methacrylate) (PMMA)	
co	mposite films	S-2
3.	Supplementary tables and figures	S-3
4.	References	S-7

1. Preparation of BNNS/IL/PC composite films (BNNS content, 50 wt%)

First, 157.1 mg of BNNS/1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF₆]) complex, containing 150 mg of BNNS and 7.1 mg of [bmim][PF₆], was added to 1.0 g of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). After the mixture was bath-sonicated for 20 min, it was mixed with PC/HFIP (142.9 mg/2.0 g) solution under bath-sonication for 30 min. The resulting BNNS/[bmim][PF₆]/PC/HFIP solution was spread on a glass plate. Then HFIP was naturally volatilized for at least 24 h. BNNS/[bmim][PF₆]/PC (BNNS content, 50 wt% \approx 35 vol%) composite films with approx. 0.3 mm thickness were obtained after further drying at 50 °C for 12 h under vacuum to remove the residual HFIP.

2. Preparation of h-BN/PMMA composite films (h-BN content, 2 wt%)

After 60.0 mg of h-BN (UHP-1K) was added to 2.0 g of acetone, it was bath-sonicated for 20 min. The h-BN/acetone mixture was mixed with a PMMA/acetone (3.0 g/8.0 g) solution under bath-sonication for 30 min. The resulting h-BN/PMMA/acetone solution was spread on a glass plate. Acetone was naturally volatilized for at least 24 h. h-BN/PMMA (h-BN content, 2 wt% \approx 1.1 vol%) composite films with approx. 0.3 mm thickness were obtained after further drying at 50 °C for 12 h under vacuum to remove residual acetone.

3. Supplementary tables and figures

 Table S1 Thermal conductivities of the BNNS/IL/PMMA composites in this study, and previously

 reported BNNS/polymer composites.^{S1-S15}

BNNS/polymer composites	Polymer type	BNNS content	Thermal co (W m	onductivity ⁻¹ K ⁻¹)	Year [reference]	
Billio polymer composites			Through −plane	In –plane		
BNNS/IL/PMMA	Thermoplastic	50 wt% (≈ 34 vol%)	5.4	7.3	This work	
BNNS/PMMA		14 wt%	1.2	_	2017 [S1]	
BNNS/PMMA		23 wt%	2.6	_	2012 [S2]	
BNNS/polyrhodanine/styrene -butadiene rubber		27.5 vol%	0.75	1.5	2017 [S3]	
BNNS/polyamide-6		40 wt%	2.5	_	2017 [S4]	
BNNS/poly(vinyl alcohol)		50 wt%	~0.85	~7		
microplasma-treated BNNS/poly(vinyl alcohol)		50 wt%	~2.1	13	2016 [S5]	
BNNS/polyamide-66		50 vol%	~1.2	_	2013 [S6]	
BNNS/poly(vinyl alcohol)		50 vol%	_	13	2012 [S7]	
BNNS/polystyrene		67 vol%	1.1	_	2015 [S8]	
BNNS/HSO3CI/PMMA		80 wt%	10.2	14.7	2016 [S9]	
BNNS/poly(vinyl alcohol)		94 wt%	_	6.9	2015 [S10]	
BNNS/Ag nanoparticle/liquid crystalline epoxy	Thermoset	25.1 vol%	_	12.6	2016 [S11]	
BNNS/epoxy		40 wt%	6.0	_	2014 [S12]	
BNNS/epoxy		50 vol%	9.8	_	2015 [S13]	
BNNS/epoxy		50 vol%	-	30	2012 [S7]	
BNNS/graphene oxide/polyimide		50 wt%	2.1	_	2014 [S14]	
BNNS/epoxy		61 wt% (= 42.8 vol%)	3.6	-	2014 [S15]	

Table S2 Surface elemental compositions (atomic %) of BNNS/[bmim][PF₆] complex, and h-BN measured using X-ray photoelectron spectroscopy (XPS) survey scans.

	С	В	Ν	0	Р	F	Si	S
BNNS/[bmim][PF ₆] complex 2a ^ª	12.6	38.5	40.3	3.39	0.31	2.63	2.32	0.0
h-BN ^{<i>a,b</i>}	8.60 [°]	42.5	44.5	2.90 ^{<i>c</i>}	0.0	0.0	1.60 [°]	0.0

^{*a*} Dried under vacuum at 80 °C for 12 h before XPS measurements. ^{*b*} Grade: UHP-1K, Showa Denko K. K., Japan, BN purity: 99.9%. ^{*c*} Surface contamination and adsorption of organic substances usually observed on BN surfaces. XPS sample surfaces are easily contaminated by impurities such as carbon and oxygen atoms from the atmosphere.^{S9,S16}

Fig. S1 (a) High-resolution transmission electron microscopy (HRTEM) images of BNNS/[bmim][Tf₂N] complexes. (b) HRTEM images of BNNS/[bmim][PF₆] complexes.

Fig. S2 X-ray powder diffraction (XRD) spectra of BNNS/[bmim][Tf₂N] complex and pristine h-BN. Various factors can affect the peak intensity, however each XRD powder sample was measured in the same shape and volume.

Fig. S3 (a) B 1s and (b) N 1s XPS spectra of BNNS/[bmim][PF₆] complex 2a, and h-BN.

Fig. S4 Photographs of films to show their flexibility. (a) BNNS/[bmim][PF₆]/PMMA composite film containing 24.5 wt% of BNNS. (b) h-BN/PMMA (24.5 wt%/75.5 wt%) composite film broken by bending. The BNNS/[bmim][PF₆]/PMMA composite film showed good flexibility and it was not broken and not cracked after bending. Meanwhile, the h-BN/PMMA composite film is much more brittle and has rough surface appearance. The h-BN/PMMA composite film was easily broken by bending.

Fig. S5 Photographs of (a) BNNS/[bmim][PF₆] dispersion in *N*-methyl-2-pyrrolidone (NMP) and (b) BNNS/[bmim][PF₆] dispersions in dimethylformamide (DMF). Each photograph was taken after letting each initial BNNS dispersion stand for 1 h. The initial dispersion was prepared after 10 min bath-sonication of a mixture of BNNS/[bmim][PF₆] complex **2b** and solvent (initial BNNS concentration in

NMP or DMF was adjusted to 0.5 mg mL⁻¹). BNNS/[bmim][PF₆] gave stable BNNS dispersion in NMP (BNNS concentration, ~0.5 mg mL⁻¹), although most of the BNNS/[bmim][PF₆] complex had precipitated in DMF after standing for 1 h.

4. References

- S1. F. Liu, Q. Li, Z. Li, Y. Liu, L. Dong, C. Xiong and Q. Wang, *Compos. Sci. Technol.*, 2017, 142, 139.
- S2. X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg and Y. Bando, *Nanoscale Res. Lett.*, 2012, 7, 662.
- S3. X. Wu, Z. Yang, W. Kuang, Z. Tang and B. Guo, Composites: Part A, 2017, 94, 77.
- S4. S S. Li, T. Yang, H. Zou, M. Liang and Y. Chen, High Perform. Polym., 2017, 29, 315.
- S5. R. -C. Zhang, D. Sun, A. Liu, S. Askari, M. Macias-Montero, P. Joseph, D. Dixon, K. Ostrikov, P. Maguire and D. Mariotti, *ACS Appl. Mater. Interfaces*, 2016, **8**, 13567.
- S6. S. Zhang, G. Lian, H. Si, J. Wang, X. Zhang, Q. Wang and D. Cui, *J. Mater. Chem. A*, 2013, 1, 5105.
- S7. W. -L. Song, P. Wang, L. Cao, A. Anderson, M. J. Meziani, A. J. Farr and Y. -P. Sun, *Angew. Chem. Int. Ed.*, 2012, **51**, 6498.
- S8. X. Huang, S. Wang, M. Zhu, K. Yang, P. Jiang, Y. Bando, D. Golberg and C. Zhi, *Nanotechnology*, 2015, 26, 015705.
- S9. T. Morishita and H. Okamoto, ACS Appl. Mater. Interfaces, 2016, 8, 27064.
- S10. X. Zeng, L. Ye, S. Yu, H. Li, R. Sun, J. Xu and C. -P. Wong, Nanoscale, 2015, 7, 6774.
- S11. F. Wang, Y. Yao, X. Zeng, T. Huang, R. Sun, J. Xu and C. -P. Wong, RSC Adv., 2016, 6, 41630.
- S12. X. -B. Wang, Q. Weng, X. Wang, X. Li, J. Zhang, F. Liu, X. -F. Jiang, H. Guo, N. Xu, D. Golberg and Y. Bando, *ACS Nano*, 2014, **8**, 9081.
- S13. J. Yu, H. Mo and P. Jiang, Polym. Adv. Technol., 2015, 26, 514.
- S14. M. -H. Tsai, I. -H. Tseng, J. -C. Chiang and J. -J. Li, ACS Appl. Mater. Interfaces, 2014, 6, 8639.

- S15. K. Kim, M. Kim and J. Kim, Compos. Sci. Technol. 2014, 103, 72.
- S16. M. R. Uddin, S. Majety, J. Li, J. Y. Lin and H. X. Jiang, J. Appl. Phys., 2014, 115, 093509.