Supporting Information

Three new high-nuclear transition-metal-substituted

heteropolytungstates : syntheses, crystal structures,

magnetic studies and NLO properties

Xi-Ming Luo,^a Lu Chen,^a Ya-Yu Dong,^a Jing Li,^b Chen-Hui Cui,^a Jia-Peng Cao^a and Yan Xu^{*a,b}

^a College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China. *E-mail: yanxu@njtech.edu.cn.

^b State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

1. Structure

Scheme S1 The polyhedral representation of $[SiW_9O_{34}]^{10}$ anion derived from $[SiW_{12}O_{40}]^4$ anion schema.

Fig. S1 The polyhedral representation of $[SiW_9O_{34}]^{10-}$ anion (a), $\{Ni_6\}$ cluster (b), $\{Ni_6SiW_9\}$ subunit (d), and compound 1 (e). The ball-and-stick representation of $\{Ni_6\}$ cluster (c). H atoms and water molecules are omitted for clarity. Color codes: W, green; Ni, sky blue; O, red; WO₆, green; NiO₆, sky blue; SiO₄, purple.

Fig. S2 The ball-and-stick (a) and polyhedral (b) of the connection between SiW_9 anion and $\{Ni_6\}$ cluster. The ball-and-stick (c) and polyhedral (d) of the connection between the $\{Ni_6SiW_9\}$ subunits. H atoms and water molecules are omitted for clarity. Color codes: Si, purple; W, green; Ni, sky blue; O, red; WO₆, green; NiO₆, sky blue; SiO₄, purple.

Fig. S3 The 'S-shape' dimer $\{(Ni_6SiW_9)_2\}^{4-}$ structure of compound 1. Color codes: Si, purple; W, green; Ni, sky blue; O, red.

Fig. S4 The ball-and-stick (a) and polyhedral (b) of the connection between SiW_9 anion and $Ni_6L(en)_2$ cluster containing ligands. The ball-and-stick (c) and polyhedral (d) of the connection between the $Ni_6L(en)_2SiW_9$ subunits. H atoms and water molecules are omitted for clarity. Color codes: Si, purple; W, green; Ni, sky blue; O, red; C, black; N, blue; WO₆, green; NiO₆, sky blue; SiO₄, purple.

Fig. S5 The 'S-shape' structure of compound **2**. Color codes: Si, purple; W, green; Ni, sky blue; O, red; C, black; N, blue.

Fig. S6 The ball-and-stick (a) and polyhedral (b) of the connection between $[PW_9O_{34}]^{10-}$ anion and $\{Ni_6\}$ cluster containing ligands. The ball-and-stick (c) and polyhedral (d) of the connection between the $\{Ni_6(L')_6(CH_3COO)(H_2O)_3(\mu_3-OH)_3(HPW_9O_{34})\}$ subunits. H atoms and water molecules are omitted for clarity. Color codes: P, purple; W, green; Ni, sky blue; O, red; C, black; N, blue; WO₆, green; NiO₆, sky blue; PO₄, purple.

Fig. S7 The 'S-shape' structure of compound **3**. Color codes: P, purple; W, green; Ni, sky blue; O, red; C, black; N, blue.

Fig. S8 The Ni…Ni distances in the Ni_6 (a) of 1, $Ni_6L(en)_2$ (b) of 2, and $Ni_6(L')_6Ac$ (c) of 3.

2. IR Spectra

Fig. S9 The IR spectrum of compound 1.

Fig. S10 The IR spectrum of compound 2.

Fig. S11 The IR spectrum of compound 3.

3. PXRD patterns

Fig. S12 Experimental and simulated PXRD patterns of 1.

Fig. S13 Experimental and simulated PXRD patterns of 2.

Fig. S14 Experimental and simulated PXRD patterns of 3.

Fig. S15 The TG curve for 1-3.

To investigate the thermal stability of 1-3, the TG analyses were carried out under N₂ atmosphere from 25 to 1000 °C at a heating rate of 10 °C min⁻¹ (Fig. S15). The TG curve of **1** shows three step weight loss processes (Fig. S15b). The first weight loss 3.30 (calcd 3.72 %) occurred in the range 30-100 °C is assigned to the release of 12 crystal water molecules. The second weight loss 5.54 (calcd 5.58 %) occurred in the range 100-300 °C belongs to 18 coordinated water molecules, following weight loss 3.16 in the range of 300–1000 °C is corresponded to the thermal decomposition of the main structure. The total weight loss of **1** is 11.99 %.

The TG curve of **2** shows four step weight loss processes (Fig. S15c). The first weight loss 2.35 (calcd 2.62 %) occurred in the range 30-130 °C is assigned to the release of 9 crystal water molecules. The second weight loss 2.28 (calcd 2.62 %) occurred in the range 130-350 °C belongs to 9 coordinated water molecules. The third weight loss 6.72 (calcd 6.80 %) in the range of 350–500 °C is corresponded to the decomposition of the organic ligands, following weight loss 9.68 in the range of 500–1000 °C is corresponded to the thermal decomposition of the main structure. The total weight loss of **2** is 21.03 %.

The TG curve of **3** shows three step weight loss processes (Fig. S15d). The first weight loss 2.37 (calcd 2.45 %) occurred in the range 30-130 °C is assigned to the release of 9 crystal water molecules. The second weight loss 16.35 (calcd 17.77 %) occurred in the range 130-700 °C belongs to 6 coordinated water molecules and the organic ligands. The third weight loss weight loss 5.08 in the range of 700–1000 °C is corresponded to the thermal decomposition of the main structure. The total weight loss of **3** is 23.80 %.

5. Nonlinear optical properties

Two-photon absorption (TPA) value containing TPA coefficient β and cross section σ were obtained through the open-aperture Z-scan technique femtosecond laser pulse and a Ti:95 sapphire system. The open-aperture Z-scan experiments of **1-3** and precursors (Na₁₀[α -SiW₉O₃₄]·18H₂O, SiW₉; Na₉[A- α -PW₉O₃₄]·7H₂O, PW₉) were performed at the concentration of 1.0 × 10⁻⁴ mol L⁻¹ by employing the DMSO (DMSO = dimethyl sulfoxide) as solvent. The Figure 10 show the Z-scan curve, the red circles are the data of experiment and the solid line is the simulated curve modified under following equations (1) and (2)¹⁻³:

$$T(z,s=1) = \sum_{m=0}^{\infty} \frac{[-q_0(z)]^m}{(m+1)^{3/2}}$$
(1)
$$q_0(z) = \frac{\beta I_0 L_{eff}}{1+x^2}$$
(2)

Where z is the sample position, I₀ is the input intensity of laser beam where z=0. $L_{eff} = (1 - e^{-\alpha L})/\alpha$ is the effective length while α and L are the linear absorption coefficient and the sample length respectively. Then the molecular TPA cross section σ can be deduced through using equation (3) ⁴⁻⁶.

Then the molecular TPA cross section
$$\sigma$$
 can be deduced through using equation (3)

$$\sigma = h \nu \beta / N_A d \times 10^{-3} {}_{(3)}$$

In which the N_A , *d* and *h* represent the Avogadro's constant, Planck's constant and the frequency of input intensity respectively.

Compounds	β^{a} (cm·GM ⁻¹)	$\sigma^{b}(GM)$	Ref.
2	0.035	1552	This work
3	0.039	1843	This work
[Ni(NTB ^c)(H ₂ O)] ₂ (H ₂ P ₂ Mo ₅ O ₂₃)·9.25H ₂ O	0.001655	758	7
$[Ni(H_2O)(NTB)]_2(PMo^{VI}_{11}Mo^{VO}_{40}) \cdot 4.5H_2O$	0.001127	404	7
[Ni(NTB)]2(Mo ₈ O ₂₆)·9H2O	0.015925	673	7
$[Co(H_2O)_6] \{ [C_3H_4N_2]_2 [C_5NH_5]_{14} [H_{15}(Mo_2O_4)_8 Co_{16}(PO_4)_{14} - (HPO_3)_{10}(OH)_3] \} \cdot 5H_2O$	0.01375	622	8
$\label{eq:constraint} \begin{split} & [C_3H_5N_2]_4[C_5NH_5]_2[Ni(H_2O)_6] \{ [C_3H_4N_2]_2[C_5NH_5]_{14}[H_{18}(Mo_2O_4)_{8} - Ni_{16}(PO_4)_{22}(OH)_6] \} \cdot 11H_2O \end{split}$	0.0056	247	8
$[C_5NH_5]_8[C_3H_5N_2]_2\{[C_5NH_5]_9[H_{31}Mo_{12}O_{24}Co_{12}(PO_4)_{23}(H_2O)_4]\}\cdot 12H_2O$	0.00263	1058	9
(diimine)platinum(II) complex bearing 2-(benzothiazol-2'-yl)-9,9- diethyl-7-ethynylfluorene ligands	-	1000	10
Na ₂ [(CH ₃) ₂ NH ₂] ₃ {Na⊂[Ce ^{III} (H ₂ O)(CH ₃ CH ₂ OH)(L-tartH ₃) (H ₂ Si ₂ W ₁₉ O ₆₆)]}·3.5H ₂ O (L-1)	0.00279	392	11
$[(CH_3)_2NH_2]_7 \{Na \subset [Ce^{III}(H_2O)(CH_3CH_2OH)(D-tartH_3) \\ (Si_2W_{19}O_{66})]\} \cdot 2.5H_2O (D-1)$	0.01369	389	11

Table S1 The third-order NLO data of reported relevant compounds

^a the TPA absorption coefficient of the solution.

^b the molecular TPA cross-section.

^c NTB = tris(2-benzimidazylmethyl)amine

References

- D. M. Li, Q. Zhang, P. Wang, J. Y. Wu, Y. H. Kan, Y. P. Tian, H. P. Zhou, J. X. Yang, X. T. Tao and M. H. Jiang, *Dalton Trans.*, 2011, 40, 8170-8178.
- 2. J. L. Hua, B. Li, F. S. Meng, F. Ding, S. X. Qian and H. Tian, Polymer. 2004, 45, 7143-7149.
- 3. T. Geethakrishnan and P. K. Palanisamy, Opt. Commun., 2007, 270, 424-428.
- 4. M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland, IEEE J. *Quantum Electron.*, 1990, 26, 760-769.
- 5. W. Zhao and P. Paltty-Muhoray, Appl. Phys. Lett., 1994, 65, 673-675.
- D. G. McLean, R. L. Sutherland, M. L. Brant, D. M. Brandelik and T. Pottenger, *Opt. Lett.*, 1993, 18, 858-860.
- 7. Y. Y. Dong, X. Xu, G. P. Zhou, H. Miao, G. H. Hu and Y. Xu, Dalton Trans., 2015, 44, 18347-18353.
- H. Miao, H.-X. Wan, M. Liu, Y. Zhang, X. Xu, W.-W. Ju, D.-R. Zhu and Y. Xu, J. Mater. Chem. C, 2014, 2, 6554-6560.
- 9. Y. Y. Dong, G. H. Hu, H. Miao, X. X. He, M. Fang and Y. Xu, Inorg. Chem., 2016, 55, 11621–11625.
- 10. W. F. Sun, B. G. Zhang, Y. J. Li, T. M. Pritchett, Z. J. Li and J. E. Haley, *Chem. Mater.* 2010, 22, 6384–6392.
- 11. W. W. Ju, H. T. Zhang, X. Xu, Y. Zhang and Y. Xu, Inorg. Chem., 2014, 53, 3269-3271.

Fig. S16 Open aperture Z-scan data for 1 and precursors (SiW_9 and PW_9). The dots are the experimental data and the solid curve represents the theoretical data.

Table S2 The Two-photon absorption (TPA) data

Compounds	$\beta^{a} (cm \cdot GM^{-1})$	$\sigma^{b}(GM)$
1	0.00117	458
2	0.035	1552
3	0.039	1843
$Na_{10}[\alpha\text{-}SiW_9O_{34}]\cdot18H_2O(\textbf{SiW_9})$	0.00098	429
$Na_9[A-\alpha-PW_9O_{34}]\cdot7H_2O(SiW_9)$	0.00110	484

^a the TPA absorption coefficient of the solution.

^b the molecular TPA cross-section.

6. Magnetic property

Fig. S17 (a) Plot of $\chi_M T$ vs T for 1; (b) Temperature dependence of $1/\chi_M$ for compound 1, the solid line is the bestfit line according to the Curie-Weiss law.

Fig. S18 Temperature dependence of $1/\chi_M$ for compound 2; the solid line is the best-fit line according to the Curie-Weiss law.

Fig. S19 Plot of $M/N\mu_B$ vs H of **2**.

Fig. S20 Temperature dependence of $1/\chi_M$ for compound 3; the solid line is the best-fit line according to the Curie-Weiss law.

Fig. S21 Plot of $M/N\mu_B$ vs H per Ni₆ unit of 3.

7. Selected bond distances and angles

	1 401		iguis for compound	u I (11).	Table 55 Scienced bond lengths for compound 1 (7).					
Ni(1)-O(28)	2.014(16)	Ni(2)-O(6)	2.030(16)	Ni(5)-O(3)	2.019(16)					
Ni(1)-O(31)	2.029(16)	Ni(2)-O(28)	2.034(15)	Ni(5)-O(28)	2.039(16)					
Ni(1)-O(2)#1	2.036(15)	Ni(2)-O(7W)	2.064(18)	Ni(5)-O(27)	2.060(15)					
Ni(1)-O(11)#1	2.046(15)	Ni(2)-O(2W)	2.070(16)	Ni(5)-O(7)	2.071(16)					
Ni(1)-O(7)	2.132(17)	Ni(2)-O(11)#1	2.096(16)	Ni(5)-O(5W)	2.096(17)					
Ni(1)-O(1)	2.245(17)	Ni(2)-O(27)	2.110(16)	Ni(5)-O(10)	2.101(16)					
Ni(3)-O(31)	1.988(16)	Ni(4)-O(3)	2.036(15)	Ni(6)-O(3)	2.014(16)					
Ni(3)-O(22)	2.052(17)	Ni(4)-O(6W)	2.049(17)	Ni(6)-O(18)	2.039(16)					
Ni(3)-O(2)#1	2.061(15)	Ni(4)-O(31)	2.062(17)	Ni(6)-O(1W)	2.059(18)					
Ni(3)-O(9W)	2.072(19)	Ni(4)-O(7)	2.062(16)	Ni(6)-O(4W)	2.064(18)					
Ni(3)-O(13)	2.074(18)	Ni(4)-O(13)	2.081(16)	Ni(6)-O(3W)	2.076(16)					
Ni(3)-O(8W)	2.081(18)	Ni(4)-O(18)	2.084(17)	Ni(6)-O(10)	2.136(15)					

Table S3 Selected bond lengths for compound 1 (Å).

Symmetry codes: #1 -*x*, -*y*+1, -*z*+1.

 Table S4 Selected bond angles (°) for compound 1.

	1 adi	e S4 Selected bond angles (^o) for compour	id I.	
O(28)-Ni(1)-O(31)	94.1(6)	O(6)-Ni(2)-O(28)	90.9(6)	O(31)-Ni(3)-O(22)	90.2(7)
O(28)-Ni(1)-O(2) ^{#1}	172.1(7)	O(6)-Ni(2)-O(7W)	93.1(7)	O(31)-Ni(3)-O(2) ^{#1}	81.8(6)
O(31)-Ni(1)-O(2) ^{#1}	81.4(6)	O(28)-Ni(2)-O(7W)	93.2(7)	O(22)-Ni(3)-O(2) ^{#1}	86.3(6)
O(28)-Ni(1)-O(11) ^{#1}	84.2(6)	O(6)-Ni(2)-O(2W)	90.2(7)	O(31)-Ni(3)-O(9W)	91.7(7)
O(31)-Ni(1)-O(11) ^{#1}	174.0(7)	O(28)-Ni(2)-O(2W)	178.9(7)	O(22)-Ni(3)-O(9W)	93.1(8)
O(2) ^{#1} -Ni(1)-O(11) ^{#1}	99.5(6)	O(7W)-Ni(2)-O(2W)	86.8(8)	O(2)#1-Ni(3)-O(9W)	173.4(7
O(28)-Ni(1)-O(7)	82.2(6)	O(6)-Ni(2)-O(11)#1	87.2(6)	O(31)-Ni(3)-O(13)	84.4(7)
O(31)-Ni(1)-O(7)	83.9(7)	O(28)-Ni(2)-O(11)#1	82.4(6)	O(22)-Ni(3)-O(13)	168.7(7
O(2) ^{#1} -Ni(1)-O(7)	90.8(6)	O(7W)-Ni(2)-O(11)#1	175.6(7)	O(2)#1-Ni(3)-O(13)	83.2(7)
O(11) ^{#1} -Ni(1)-O(7)	90.2(6)	O(2W)-Ni(2)-O(11) ^{#1}	97.6(7)	O(9W)-Ni(3)-O(13)	96.9(8)
O(28)-Ni(1)-O(1)	97.8(6)	O(6)-Ni(2)-O(27)	171.7(6)	O(31)-Ni(3)-O(8W)	176.9(7
O(31)-Ni(1)-O(1)	96.7(6)	O(28)-Ni(2)-O(27)	83.8(6)	O(22)-Ni(3)-O(8W)	91.3(7)
O(2) ^{#1} -Ni(1)-O(1)	89.2(6)	O(7W)-Ni(2)-O(27)	93.6(7)	O(2)#1-Ni(3)-O(8W)	101.0(7
O(11) ^{#1} -Ni(1)-O(1)	89.3(6)	O(2W)-Ni(2)-O(27)	95.1(7)	O(9W)-Ni(3)-O(8W)	85.5(8)
O(7)-Ni(1)-O(1)	179.5(6)	O(11)#1-Ni(2)-O(27)	85.8(6)	O(13)-Ni(3)-O(8W)	94.6(7)
O(3)-Ni(4)-O(6W)	94.6(7)	O(3)-Ni(5)-O(28)	97.4(6)	O(3)-Ni(6)-O(18)	82.3(7)
O(3)-Ni(4)-O(31)	99.2(6)	O(3)-Ni(5)-O(27)	175.0(6)	O(3)-Ni(6)-O(1W)	176.7(7
O(6W)-Ni(4)-O(31)	93.5(7)	O(28)-Ni(5)-O(27)	85.0(6)	O(18)-Ni(6)-O(1W)	95.7(7)
O(3)-Ni(4)-O(7)	84.8(6)	O(3)-Ni(5)-O(7)	84.9(6)	O(3)-Ni(6)-O(4W)	97.7(7)
O(6W)-Ni(4)-O(7)	178.1(7)	O(28)-Ni(5)-O(7)	83.1(6)	O(18)-Ni(6)-O(4W)	177.5(7
O(31)-Ni(4)-O(7)	84.9(6)	O(27)-Ni(5)-O(7)	91.0(6)	O(1W)-Ni(6)-O(4W)	84.2(7)
O(3)-Ni(4)-O(13)	174.8(6)	O(3)-Ni(5)-O(5W)	93.9(6)	O(3)-Ni(6)-O(3W)	94.4(7)
O(6W)-Ni(4)-O(13)	90.3(7)	O(28)-Ni(5)-O(5W)	93.1(7)	O(18)-Ni(6)-O(3W)	89.6(7)
O(31)-Ni(4)-O(13)	82.4(7)	O(27)-Ni(5)-O(5W)	90.3(6)	O(1W)-Ni(6)-O(3W)	88.1(7)
O(7)-Ni(4)-O(13)	90.5(6)	O(7)-Ni(5)-O(5W)	175.9(7)	O(4W)-Ni(6)-O(3W)	92.9(8)
O(3)-Ni(4)-O(18)	80.7(6)	O(3)-Ni(5)-O(10)	81.8(6)	O(3)-Ni(6)-O(10)	81.1(6)
O(6W)-Ni(4)-O(18)	92.2(7)	O(28)-Ni(5)-O(10)	174.0(6)	O(18)-Ni(6)-O(10)	83.3(6)
O(31)-Ni(4)-O(18)	174.3(6)	O(27)-Ni(5)-O(10)	95.3(6)	O(1W)-Ni(6)-O(10)	96.1(6)
O(7)-Ni(4)-O(18)	89.5(6)	O(7)-Ni(5)-O(10)	90.8(6)	O(4W)-Ni(6)-O(10)	94.3(7)
O(13)-Ni(4)-O(18)	97.1(7)	O(5W)-Ni(5)-O(10)	92.9(7)	O(3W)-Ni(6)-O(10)	172.0(7
Ni(1) ^{#1} -O(2)-Ni(3) ^{#1}	96.7(6)	Ni(5)-O(10)-Ni(6)	95.1(6)	Ni(1)-O(28)-Ni(5)	99.7(6)
Ni(6)-O(3)-Ni(5)	101.6(7)	Ni(1)#1-O(11)-Ni(2)#1	94.8(6)	Ni(2)-O(28)-Ni(5)	96.6(6)
Ni(6)-O(3)-Ni(4)	99.0(7)	Ni(3)-O(13)-Ni(4)	94.3(7)	Ni(3)-O(31)-Ni(1)	99.4(7)
Ni(5)-O(3)-Ni(4)	96.2(6)	Ni(6)-O(18)-Ni(4)	96.6(7)	Ni(3)-O(31)-Ni(4)	97.6(7)
Ni(4)-O(7)-Ni(5)	93.8(7)	Ni(5)-O(27)-Ni(2)	93.7(6)	Ni(1)-O(31)-Ni(4)	97.2(7)
Ni(4)-O(7)-Ni(1)	94.0(6)	Ni(1)-O(28)-Ni(2)	97.7(7)	Ni(5)-O(7)-Ni(1)	94.9(7)

Symmetry codes: #1 -x,-y+1,-z+1.

Table S5 Selected bond lengths for compound 2 (Å).

Ni(1)-O(4)	1.998(8)	Ni(3)-O(1)	2.017(8)	Ni(5)-O(8)	2.006(9)
Ni(1)-O(1)	2.007(9)	Ni(3)-N(2)	2.056(10)	Ni(5)-O(4)	2.038(8)
Ni(1)-O(14)	2.052(8)	Ni(3)-O(21)#1	2.075(9)	Ni(5)-O(22)	2.065(8)
Ni(1)-O(17)	2.069(8)	Ni(3)-N(1)	2.076(11)	Ni(5)-O(28)	2.069(8)
Ni(1)-O(12)	2.125(8)	Ni(3)-O(23)	2.111(8)	Ni(5)-O(12)	2.093(8)
Ni(1)-O(2)#1	2.250(8)	Ni(3)-O(14)	2.147(8)	Ni(5)-O(1W)	2.110(8)
Ni(2)-O(4)	1.982(8)	Ni(4)-O(8)	2.006(8)	Ni(6)-O(1)	2.028(8)
Ni(2)-O(6)#1	2.062(8)	Ni(4)-N(4)	2.050(11)	Ni(6)-O(8)	2.041(8)
Ni(2)-O(13)	2.073(8)	Ni(4)-N(3)	2.062(11)	Ni(6)-O(30)	2.055(8)
Ni(2)-O(28)	2.077(8)	Ni(4)-O(3W)	2.111(10)	Ni(6)-O(23)	2.081(9)
Ni(2)-O(17)	2.079(8)	Ni(4)-O(30)	2.124(8)	Ni(6)-O(12)	2.083(8)
Ni(2)-O(10)	2.103(9)	Ni(4)-O(22)	2.149(8)	Ni(6)-O(2W)	2.117(9)
Ni(7)-N(6)	2.075(18)	Ni(7)-O(4W)	2.082(18)	Ni(7)-O(9W)	2.116(18)
Ni(7)-O(10W)	2.141(18)	Ni(7)-O(26)	2.179(10)	Ni(7)-N(5)	2.24(3)

Symmetry codes: #1 -*x*+1/2, -*y*+1/2, -*z*.

 Table S6 Selected bond angles (°) for compound 2.

O(4)-Ni(1)-O(1)	95.3(3)	O(4)-Ni(2)-O(6)#1	92.0(3)	O(1)-Ni(3)-N(2)	95.2(4)
O(4)-Ni(1)-O(14)	172.7(3)	O(4)-Ni(2)-O(13)	102.0(3)	O(1)-Ni(3)-O(21) ^{#1}	88.4(3)
O(1)-Ni(1)-O(14)	83.0(3)	O(6)#1-Ni(2)-O(13)	99.2(3)	N(2)-Ni(3)-O(21)#1	94.1(4)
O(4)-Ni(1)-O(17)	83.1(3)	O(4)-Ni(2)-O(28)	84.9(3)	O(1)-Ni(3)-N(1)	178.7(4)
O(1)-Ni(1)-O(17)	172.6(3)	O(6)#1-Ni(2)-O(28)	174.6(3)	N(2)-Ni(3)-N(1)	85.4(4)
O(14)-Ni(1)-O(17)	97.6(3)	O(13)-Ni(2)-O(28)	85.8(3)	O(21) ^{#1} -Ni(3)-N(1)	92.8(4)
O(4)-Ni(1)-O(12)	83.7(3)	O(4)-Ni(2)-O(17)	83.2(3)	O(1)-Ni(3)-O(23)	83.4(3)
O(1)-Ni(1)-O(12)	82.7(3)	O(6)#1-Ni(2)-O(17)	89.2(3)	N(2)-Ni(3)-O(23)	95.1(4)
O(14)-Ni(1)-O(12)	89.1(3)	O(13)-Ni(2)-O(17)	169.9(3)	O(21) ^{#1} -Ni(3)-O(23)	168.2(3)
O(17)-Ni(1)-O(12)	89.9(3)	O(28)-Ni(2)-O(17)	86.0(3)	N(1)-Ni(3)-O(23)	95.4(4)
O(4)-Ni(1)-O(2)#1	95.2(3)	O(4)-Ni(2)-O(10)	165.4(3)	O(1)-Ni(3)-O(14)	80.4(3)
O(1)-Ni(1)-O(2) ^{#1}	98.9(3)	O(6) ^{#1} -Ni(2)-O(10)	91.7(3)	N(2)-Ni(3)-O(14)	175.5(4)
O(14)-Ni(1)-O(2)#1	92.1(3)	O(13)-Ni(2)-O(10)	63.5(3)	O(21)#1-Ni(3)-O(14)	86.5(3)
O(17)-Ni(1)-O(2)#1	88.5(3)	O(28)-Ni(2)-O(10)	92.5(3)	N(1)-Ni(3)-O(14)	99.0(4)
O(12)-Ni(1)-O(2)#1	178.1(3)	O(17)-Ni(2)-O(10)	110.9(3)	O(23)-Ni(3)-O(14)	83.7(3)
O(8)-Ni(4)-N(4)	177.8(4)	O(8)-Ni(5)-O(4)	97.4(3)	O(1)-Ni(6)-O(8)	96.0(3)
O(8)-Ni(4)-N(3)	96.5(4)	O(8)-Ni(5)-O(22)	83.1(3)	O(1)-Ni(6)-O(30)	175.6(3)
N(4)-Ni(4)-N(3)	83.9(4)	O(4)-Ni(5)-O(22)	175.1(3)	O(8)-Ni(6)-O(30)	82.8(3)
O(8)-Ni(4)-O(3W)	92.3(4)	O(8)-Ni(5)-O(28)	175.5(3)	O(1)-Ni(6)-O(23)	83.9(3)
N(4)-Ni(4)-O(3W)	89.8(4)	O(4)-Ni(5)-O(28)	83.7(3)	O(8)-Ni(6)-O(23)	176.6(4)
N(3)-Ni(4)-O(3W)	94.6(4)	O(22)-Ni(5)-O(28)	95.4(3)	O(30)-Ni(6)-O(23)	97.0(3)
O(8)-Ni(4)-O(30)	82.0(3)	O(8)-Ni(5)-O(12)	85.2(3)	O(1)-Ni(6)-O(12)	83.3(3)
N(4)-Ni(4)-O(30)	97.4(4)	O(4)-Ni(5)-O(12)	83.5(3)	O(8)-Ni(6)-O(12)	84.6(3)
N(3)-Ni(4)-O(30)	176.4(4)	O(22)-Ni(5)-O(12)	91.6(3)	O(30)-Ni(6)-O(12)	92.3(3)
O(3W)-Ni(4)-O(30)	88.7(4)	O(28)-Ni(5)-O(12)	90.5(3)	O(23)-Ni(6)-O(12)	91.9(3)
O(8)-Ni(4)-O(22)	81.0(3)	O(8)-Ni(5)-O(1W)	97.1(3)	O(1)-Ni(6)-O(2W)	96.0(4)
N(4)-Ni(4)-O(22)	96.8(4)	O(4)-Ni(5)-O(1W)	91.3(3)	O(8)-Ni(6)-O(2W)	93.7(4)
N(3)-Ni(4)-O(22)	92.2(4)	O(22)-Ni(5)-O(1W)	93.5(3)	O(30)-Ni(6)-O(2W)	88.3(4)
O(3W)-Ni(4)-O(22)	170.9(4)	O(28)-Ni(5)-O(1W)	87.2(3)	O(23)-Ni(6)-O(2W)	89.8(4)
O(30)-Ni(4)-O(22)	84.3(3)	O(12)-Ni(5)-O(1W)	174.6(3)	O(12)-Ni(6)-O(2W)	178.1(3)
Ni(1)-O(1)-Ni(3)	100.4(4)	Ni(4)-O(8)-Ni(6)	99.3(4)	Ni(5)-O(22)-Ni(4)	94.3(3)
Ni(1)-O(1)-Ni(6)	99.7(4)	Ni(5)-O(8)-Ni(6)	97.0(3)	Ni(6)-O(23)-Ni(3)	93.6(3)
Ni(3)-O(1)-Ni(6)	98.1(3)	Ni(6)-O(12)-Ni(5)	93.1(3)	Ni(5)-O(28)-Ni(2)	93.3(3)
Ni(2)-O(4)-Ni(1)	99.2(3)	Ni(6)-O(12)-Ni(1)	94.3(3)	Ni(6)-O(30)-Ni(4)	95.1(3)
Ni(2)-O(4)-Ni(5)	97.2(4)	Ni(5)-O(12)-Ni(1)	93.5(3)	Ni(4)-O(8)-Ni(5)	100.8(4)
Ni(1)-O(4)-Ni(5)	99.2(3)	Ni(1)-O(14)-Ni(3)	94.8(3)	Ni(1)-O(17)-Ni(2)	93.8(3)

Symmetry codes: #1 -*x*+1/2, -*y*+1/2, -*z*.

Table S7 Selected bond lengths for compound 3 (Å).

Ni(1)-O(10)	2.042(11)	Ni(3)-O(5)	2.032(11)	Ni(5)-O(12)	2.010(11)
Ni(1)-N(6)	2.063(15)	Ni(3)-O(12)	2.032(11)	Ni(5)-N(4)	2.030(15)
Ni(1)-O(15)#1	2.082(12)	Ni(3)-O(8)	2.045(13)	Ni(5)-O(23)	2.104(12)
Ni(1)-O(21)	2.092(11)	Ni(3)-O(23)	2.047(12)	Ni(5)-O(4W)	2.117(13)
Ni(1)-O(30)	2.097(12)	Ni(3)-O(2)	2.065(11)	Ni(5)-O(5W)	2.132(13)
Ni(1)-O(3W)	2.170(12)	Ni(3)-O(11)	2.147(11)	Ni(5)-O(9)	2.144(11)
Ni(2)-O(5)	1.998(11)	Ni(4)-O(12)	2.022(11)	Ni(6)-O(5)	2.030(12)
Ni(2)-O(21)	2.049(11)	Ni(4)-O(30)	2.053(12)	Ni(6)-N(1)	2.079(17)
Ni(2)-O(10)	2.066(12)	Ni(4)-O(10)	2.058(12)	Ni(6)-O(2)	2.082(11)
Ni(2)-N(2)	2.070(16)	Ni(4)-N(5)	2.062(14)	Ni(6)-O(27)	2.082(15)
Ni(2)-O(31)	2.106(12)	Ni(4)-O(9)	2.108(12)	Ni(6)-N(3)	2.100(15)
Ni(2)-O(11)	2.251(11)	Ni(4)-O(11)	2.223(11)	Ni(6)-O(31)	2.372(12)

Symmetry codes:#1 -*x*+1, -*y*+1, -*z*+1.

 Table S8 Selected bond angles (°) for compound 3.

O(10)-Ni(1)-N(6)	98.1(5)	O(5)-Ni(3)-O(12)	94.0(5)	O(12)-Ni(5)-N(4)	98.3(6)
O(10)-Ni(1)-O(15)#1	171.9(4)	O(5)-Ni(3)-O(8)	91.7(5)	O(12)-Ni(5)-O(23)	81.8(5)
N(6)-Ni(1)-O(15)#1	89.1(5)	O(12)-Ni(3)-O(8)	92.7(4)	N(4)-Ni(5)-O(23)	178.8(6)
O(10)-Ni(1)-O(21)	81.1(4)	O(5)-Ni(3)-O(23)	173.7(5)	O(12)-Ni(5)-O(4W)	173.2(5)
N(6)-Ni(1)-O(21)	174.9(5)	O(12)-Ni(3)-O(23)	82.7(5)	N(4)-Ni(5)-O(4W)	88.5(6)
O(15) ^{#1} -Ni(1)-O(21)	92.0(4)	O(8)-Ni(3)-O(23)	93.8(5)	O(23)-Ni(5)-O(4W)	91.4(5)
O(10)-Ni(1)-O(30)	81.0(5)	O(5)-Ni(3)-O(2)	84.8(5)	O(12)-Ni(5)-O(5W)	89.6(5)
N(6)-Ni(1)-O(30)	96.0(5)	O(12)-Ni(3)-O(2)	175.7(5)	N(4)-Ni(5)-O(5W)	94.2(6)
O(15) ^{#1} -Ni(1)-O(30)	94.5(5)	O(8)-Ni(3)-O(2)	91.5(4)	O(23)-Ni(5)-O(5W)	87.0(5)
O(21)-Ni(1)-O(30)	88.9(4)	O(23)-Ni(3)-O(2)	98.1(5)	O(4W)-Ni(5)-O(5W)	89.1(6)
O(10)-Ni(1)-O(3W)	98.5(5)	O(5)-Ni(3)-O(11)	83.2(4)	O(12)-Ni(5)-O(9)	79.8(4)
N(6)-Ni(1)-O(3W)	86.4(5)	O(12)-Ni(3)-O(11)	82.6(4)	N(4)-Ni(5)-O(9)	92.6(6)
O(15) ^{#1} -Ni(1)-O(3W)	85.7(5)	O(8)-Ni(3)-O(11)	172.7(4)	O(23)-Ni(5)-O(9)	86.2(5)
O(21)-Ni(1)-O(3W)	88.6(5)	O(23)-Ni(3)-O(11)	91.1(5)	O(4W)-Ni(5)-O(9)	100.8(5)
O(30)-Ni(1)-O(3W)	177.5(5)	O(2)-Ni(3)-O(11)	93.2(4)	O(5W)-Ni(5)-O(9)	168.1(5)
O(5)-Ni(2)-O(21)	169.8(5)	O(12)-Ni(4)-O(30)	169.7(5)	O(5)-Ni(6)-N(1)	95.9(6)
O(5)-Ni(2)-O(10)	95.0(5)	O(12)-Ni(4)-O(10)	97.6(4)	O(5)-Ni(6)-O(2)	84.4(4)
O(21)-Ni(2)-O(10)	81.6(4)	O(30)-Ni(4)-O(10)	81.6(5)	N(1)-Ni(6)-O(2)	168.6(6)
O(5)-Ni(2)-N(2)	97.9(6)	O(12)-Ni(4)-N(5)	97.4(5)	O(5)-Ni(6)-O(27)	84.8(5)
O(21)-Ni(2)-N(2)	92.0(6)	O(30)-Ni(4)-N(5)	92.9(5)	N(1)-Ni(6)-O(27)	96.2(6)
O(10)-Ni(2)-N(2)	93.6(5)	O(10)-Ni(4)-N(5)	95.9(5)	O(2)-Ni(6)-O(27)	95.1(5)
O(5)-Ni(2)-O(31)	81.9(5)	O(12)-Ni(4)-O(9)	80.4(4)	O(5)-Ni(6)-N(3)	173.4(6)
O(21)-Ni(2)-O(31)	99.9(5)	O(30)-Ni(4)-O(9)	98.8(4)	N(1)-Ni(6)-N(3)	89.8(6)
O(10)-Ni(2)-O(31)	170.9(5)	O(10)-Ni(4)-O(9)	171.4(5)	O(2)-Ni(6)-N(3)	90.7(5)
N(2)-Ni(2)-O(31)	95.3(6)	N(5)-Ni(4)-O(9)	92.7(5)	O(27)-Ni(6)-N(3)	91.3(6)
O(5)-Ni(2)-O(11)	81.3(4)	O(12)-Ni(4)-O(11)	80.9(4)	O(5)-Ni(6)-O(31)	74.9(4)
O(21)-Ni(2)-O(11)	88.7(4)	O(30)-Ni(4)-O(11)	88.8(4)	N(1)-Ni(6)-O(31)	89.7(5)
O(10)-Ni(2)-O(11)	81.8(4)	O(10)-Ni(4)-O(11)	82.7(4)	O(2)-Ni(6)-O(31)	79.4(4)
N(2)-Ni(2)-O(11)	175.2(5)	N(5)-Ni(4)-O(11)	177.6(5)	O(27)-Ni(6)-O(31)	159.4(5)
O(31)-Ni(2)-O(11)	89.3(4)	O(9)-Ni(4)-O(11)	88.7(4)	N(3)-Ni(6)-O(31)	108.5(6)
Ni(3)-O(2)-Ni(6)	91.7(4)	Ni(1)-O(10)-Ni(2)	98.7(5)	Ni(5)-O(12)-Ni(3)	98.6(5)
Ni(2)-O(5)-Ni(6)	108.4(5)	Ni(4)-O(10)-Ni(2)	103.0(5)	Ni(4)-O(12)-Ni(3)	103.1(5)
Ni(2)-O(5)-Ni(3)	103.5(5)	Ni(3)-O(11)-Ni(4)	93.2(4)	Ni(2)-O(21)-Ni(1)	97.6(4)
Ni(6)-O(5)-Ni(3)	94.2(5)	Ni(3)-O(11)-Ni(2)	92.0(4)	Ni(3)-O(23)-Ni(5)	95.2(5)
Ni(4)-O(9)-Ni(5)	95.8(4)	Ni(4)-O(11)-Ni(2)	92.3(4)	Ni(4)-O(30)-Ni(1)	97.5(5)
Ni(1)-O(10)-Ni(4)	99.0(5)	Ni(5)-O(12)-Ni(4)	102.9(5)	Ni(2)-O(31)-Ni(6)	93.5(4)

Symmetry codes: #1 -*x*+1, -*y*+1, -*z*+1.

D —H···A	<i>D</i> —Н	Н…А	D···A	D —H…A
N1-H1C-07	0.9	2.58	3.225(16)	129
N1-H1C···O29	0.9	2.45	3.167(15)	137
N1-H1D····O10 ^{#1}	0.9	2.06	2.951(15)	168
$N2 - H2D \cdots O2W$	0.9	2.26	3.066(16)	148
N3-H3 <i>C</i> ···O1 <i>W</i>	0.9	2.45	3.260(16)	150
N4—H4 <i>B</i> ···O31	0.9	2.41	3.182(15)	143
N3—H3 <i>B</i> ···O7 ^{#2}	0.9	2.4	3.262(15)	161
N3-H3C···O29 ^{#2}	0.9	2.56	3.100(14)	119

Table S9 Hydrogen bonds for 2 [Å and °].

Symmetry codes: #1 1/2-x, 1/2-y, -z; #2 1/2-x, 1/2+y, 1/2-z.

Table S10 Hydrogen bonds for 3 [Å and °].

<i>D</i> —H··· <i>A</i>	<i>D</i> —н	Н…А	D ···A	D —H···A
С11—Н11А…О16	0.93	2.39	3.32(3)	176
С15—Н15А…О27	0.93	2.34	2.95(3)	123
C5-H5A···O24 ^{#1}	0.93	2.47	3.10(2)	125
C19-H19A····O3 ^{#1}	0.93	2.56	3.35(2)	143
$C24 - H24A \cdots O29^{\#1}$	0.93	2.54	3.42(2)	158
C28-H28A···O25 ^{#1}	0.93	2.53	3.15(2)	124

Symmetry codes: #1 *x*, 3/2-*y*, -1/2+*z*.