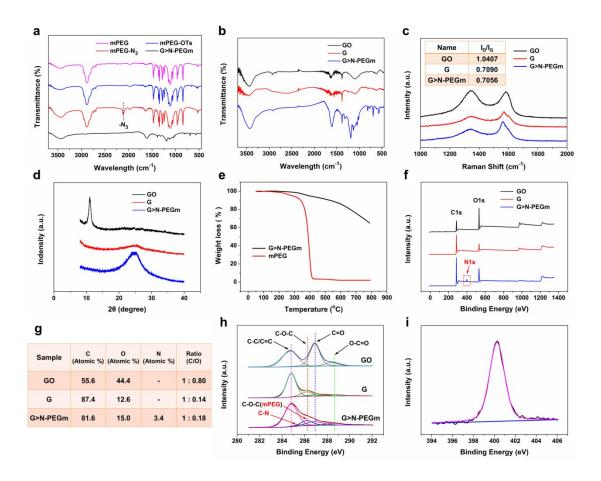
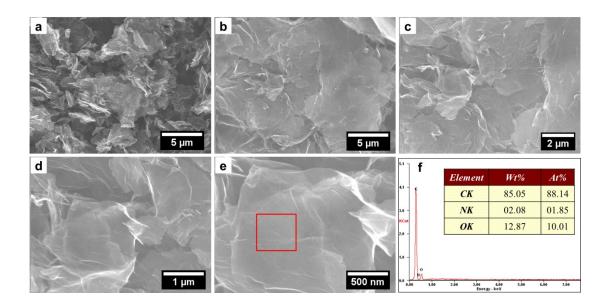
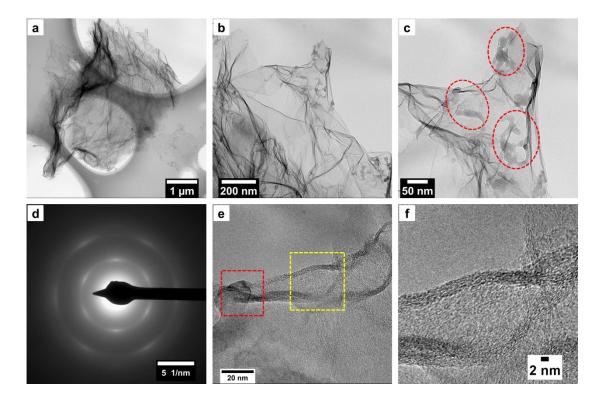
Supporting Information

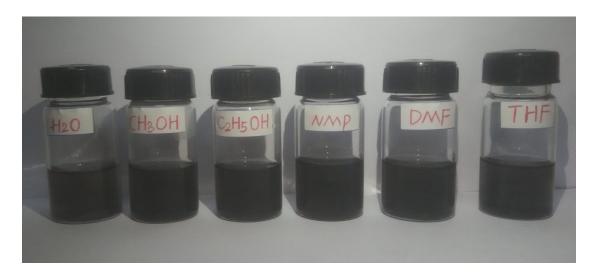

High-Performance Double Ion-buffering Reservoirs of Asymmetric Supercapacitors Based on Flower-like Co₃O₄-G>N-PEGm Microspheres and 3D rGO-CNT>N-PEGm Aerogels

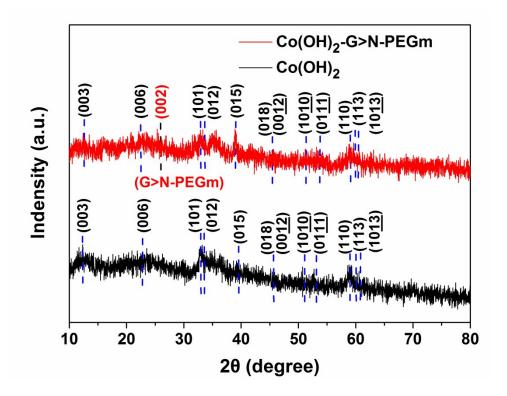
Changwei Lai,^{ab} Ying Sun,^a Xueqin Zhang,^a Hong Yang,^a and Baoping Lin*^a

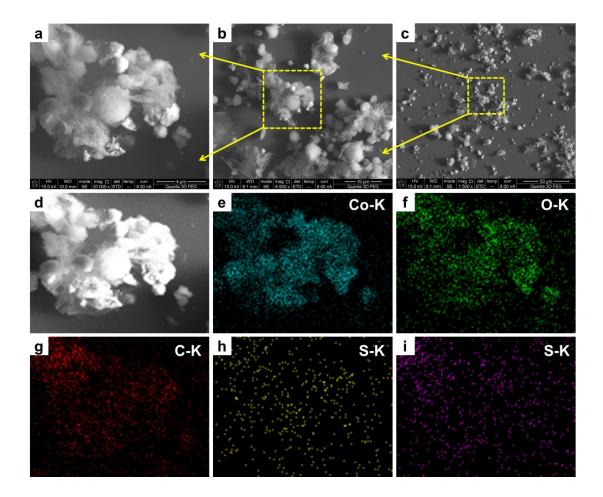

^aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
^bAnyang Institute of Technology, Anyang, 455000, P. R. China.

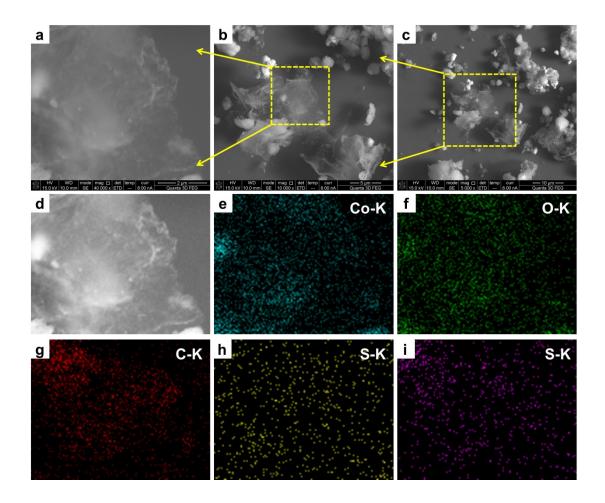
* Corresponding author


E-mail: lbp@seu.edu.cn


Figure S1. (a-b) FT-IR spectra of mPEG, mPEG-OTs, mPEG-N₃, G>N-PEGm, GO and G. (c) Raman spectra of GO, G and G>N-PEGm (the inset shows the ratio of I_D/I_G). (d) XRD patterns of GO, G and G>N-PEGm. (e) TGA curves of G>N-PEGm and mPEG in N₂. (f) The fully scanned XPS spectra, (g) the C/O ratio and (h) C 1s high-resolution XPS spectra of GO, G and G>N-PEGm. (i) N 1s high-resolution XPS spectrum of G>N-PEGm


Figure S2. (a-e) Different magnification SEM images of G>N-PEGm nanosheets. (f) EDS spectrum of G>N-PEGm (the inset shows the ratio of elements).


Figure S3. (a-c) Different magnification TEM images of G>N-PEGm nanosheets (the red rings in figure S3c show the aggregation of PEG polymer chains on the surface of the grapheme nanosheets). (d) SAED patterns and (e-f) HRTEM images of G>N-PEGm nanosheets.


Figure S4. Photographs of G>N-PEGm nanosheets dispersed in water, methanol, ethanol, NMP, DMF and THF (respectively from left to right).

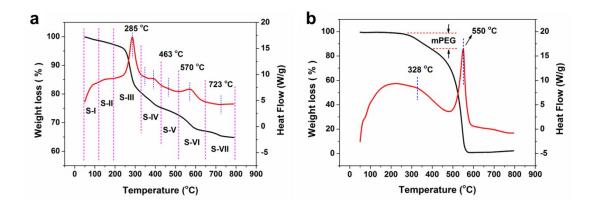

Figure S5. XRD patterns of the 3D flower-like hierarchical microspheres of Co(OH)₂ and Co(OH)₂-G>N-PEGm.

Figure S6. (a-c) Different magnification SEM images of $Co(OH)_2$ -G>N-PEGm, (d-i) the EDS elemental mapping analysis of Co-L, O-K, C-K, S-K, and Cl-K for DBS- α -Co(OH)₂-G>N-PEGm flower spheress.

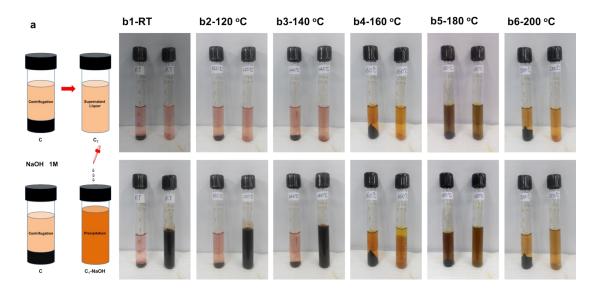
Figure S7. (a-c) Different magnification SEM images of G>N-PEGm nanosheets in the Co(OH)₂-G>N-PEGm composites, (d-i) the EDS elemental mapping analysis of Co-L, O-K, C-K, S-K, and Cl-K for G>N-PEGm.

Figure S8. (a) TGA-DSC curves of the 3D flower-like hierarchical microspheres DBS-Co(OH)₂-G>N-PEGm in air. (b) TGA-DSC curves of the G>N-PEGm nanosheets in air.

Store	Temperature	Discussion	Chemical	Weight loss	Weight
Stage	range	Discussion	reaction	range (%)	loss (%)
S-I	50-120	Adsorbed surface water	-	99.9-98.7	1.2
S-II	120-200	Intercalated crystallization	C1	98.7-97.4	1.3
5 11	120 200	water	C1	<i>y</i> 0. <i>r yr</i> .1	1.0
S-III	200-320	Thermal oxidative	C2	97.4-80.5	16.9
5 11		decomposition of $Co(OH)_2$	02	77.1 00.5	10.7
S-IV	320-430	Thermal oxidation of mPEG	C3	80.5-75.3	5.2
517	520 150	(on G>N-PEGm)	05	00.0 70.0	0.2
S-V	430-520	Thermal oxidation of DBS	C4	75.3-72.6	2.7
S-VI	520-650	Thermal oxidation of G	C5	72.6-67.1	5.5
S-VII	650-800	Thermal oxidation of CoSO ₄	C6	67.1-64.8	2.3

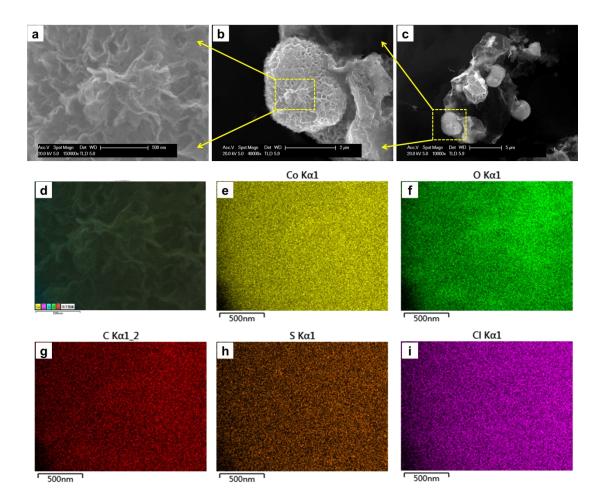
Table S1. Temperature ranges of TGA-DSC curves of the flower microspheres Co(OH)₂-G>N-PEGm composites in air.

_


Chemical reactions in the stages of TGA-DSC curves of the flower microspheres Co(OH)₂-G>N-PEGm composites in air as follows:

Co(OH) _x DBS _y ⋅ zH ₂ O-G>N-PEGm ^{120 - 200 °C}	Co(OH) _x DBS _y -G>N-PEGm + H ₂ O	(C1)
Co(OH) _x DBS _y -G>N-PEGm + O ₂	Co ₃ O _{4-y/2} DBS _y -G>N-PEGm + H ₂ O	(C2)
$Co_3O_{4-y/2}DBS_y$ -G>N-PEGm + $O_2 \xrightarrow{320-430 \circ C}$	Co ₃ O _{4-y/2} DBS _y -G + -(CH ₂ CH ₂ O)- _x	
	+ H_2O + CO_2 + NO_2	(C3)

$$Co_3O_{4-y/2}DBS_y-G + O_2 \xrightarrow{430-520\,^{\circ}C} Co_3O_{4-y}(SO_4)_y-G + H_2O + CO_2$$
 (C4)


$$Co_3O_{4-y}(SO_4)_y-G + O_2 \xrightarrow{520-650 \circ C} Co_3O_{4-y}(SO_4)_y + CO_2$$
 (C5)

$$Co_3O_{4-y}(SO_4)_y \xrightarrow{650-800^{\circ}C} Co_3O_4 + O_2 + SO_2$$
 (C6)

Figure S9. (a) Schematic illustration and (b1-b6) photographs of detecting the concentration of Co^{2+} ions in the reaction process of precursors.

In **Figure S9a**, the schematic illustration of C, C₁ and C₁-NaOH represent the centrifugal sedimentation, clarified centrifugate and sedimentation (by adding NaOH solution) of precursors, respectively. As shown in **Figure S9b1- S9b6**, by the reaction proceeding under different reaction temperatures, the concentration of Co^{2+} ions becomes lower gradually, thus indicating to form the Co(OH)₂ microspheres.

Figure S10. (a-c) Different magnification SEM images of Co₃O₄-G>N-PEGm, (d-i) the EDS elemental mapping analysis of Co-L, O-K, C-K, S-K, and Cl-K for Co₃O₄-G>N-PEGm flower spherses.

The evenly distributed Co, O, C, S and Cl elements (without Na element else) in the Co_3O_4 -G>N-PEGm flower microsphere can indicate that the DBS-intercalated $Co(OH)_2$ -G>N-PEGm composites have been converted to Co_3O_4 -G>N-PEGm with DBS ions doping in the cobalt spinel oxide (Figure S10d-S10i).

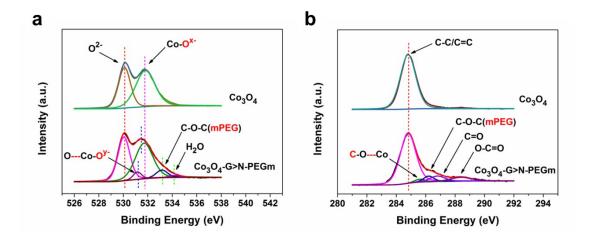
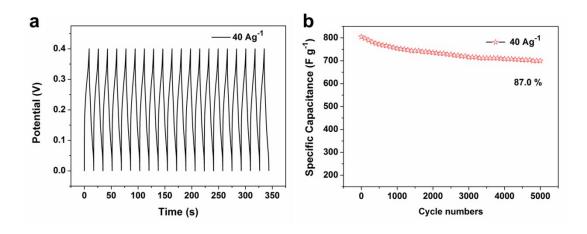


Figure S11. (a) O 1s and (b) C 1s XPS spectrum of Co₃O₄ and Co₃O₄-G>N-PEGm.

As shown in **Figure S11**b, it displays four different peaks at 284.8, 286.2, 286.8 and 288.4 eV, which can be respectively ascribed to non oxygenated C (C=C/C-C) in aromatic rings (284.8 eV), C in C-O-C (286.2 eV), C in C=O (286.8 eV) and C in O-C=O (288.4 eV) bonding compared with the bare Co_3O_4 flower spheres. The peak at 286.0 eV for Co_3O_4 -G>N-PEGm can be mainly attributed to the ether-oxygen groups (C-O-C) of mPEG polymer chains on G>N-PEGm. It is worthy to note that the peak at 285.6 eV for Co_3O_4 -G>N-PEGm may correspond to Co-:O-C coordination bonds.



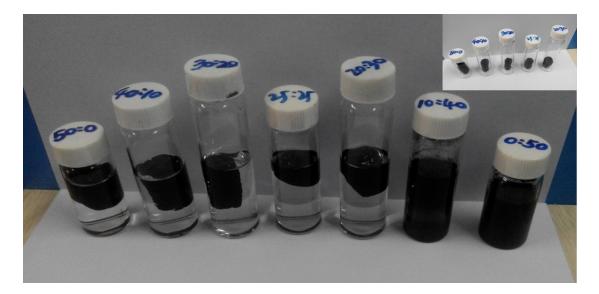
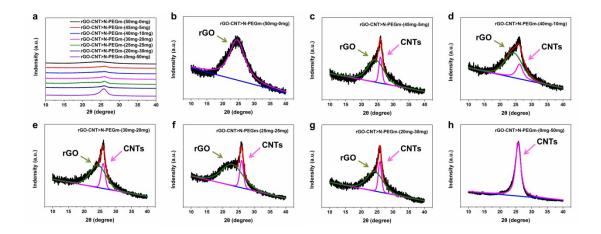
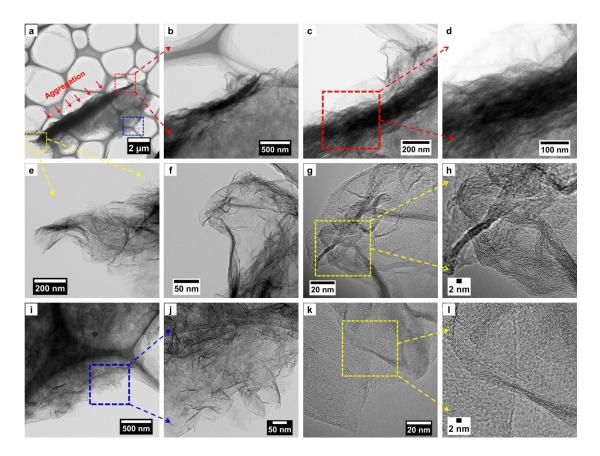
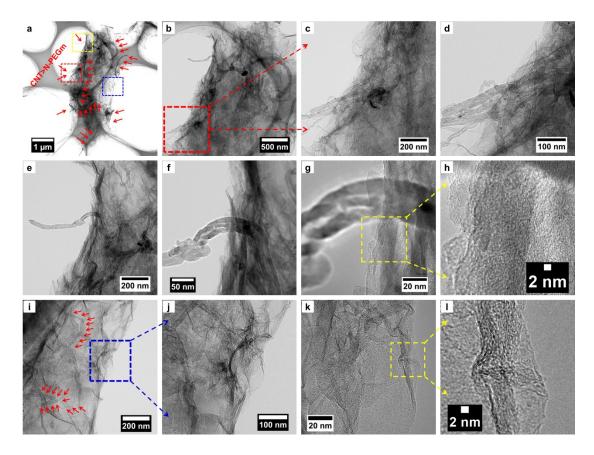

Figure S12. The the long-term stability of Co_3O_4 -G>N-PEGm: (a) the initial 20 times galvanostatic charge-discharge curves, and (b) the cycling performance at a current density of 40 Ag⁻¹.

Table S2. BET surface area, pore volume, and BJH pore size distribution of Co₃O₄-G>N-PEGm-250, Co₃O₄-G>N-PEGm-350 and Co₃O₄-G>N-PEGm-450.


Name	BET (m²/g)	Pore volume (mL/g)	BJH (nm)		
Co₃O₄ -G>PEGm-250	107.79	0.52	4	20-40	
Co₃O₄ -G>PEGm-350	96.59	0.47	4	25-50	
Co ₃ O ₄ -G>PEGm-450	73.08	0.44	6.5	30-65	


Figure S13. Photographs of 3D rGO-CNT>N-PEGm aerogels in different sizes.


Figure S14. Photographs of 3D rGO-CNT>N-PEGm hydrogels in water with different ratios of rGO-CNT>N-PEGm respectively from left to right as shown on samples (the inset without water).

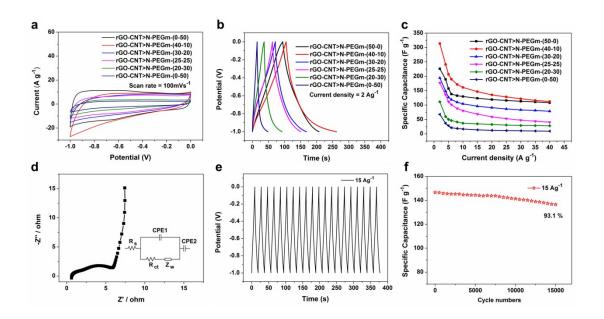

Figure S15. (a) XRD patterns of 3D rGO-CNT>N-PEGm aerogels with different mass ratios. (b-h) XRD peaks of 3D rGO-CNT>N-PEGm aerogels with different ratios according to the (002) planes of rGO and CNTs.

Figure S16. (a-f) and (i-j) TEM images of 3D rGO aerogels. (g-h) and (k-l) HRTEM images of 3D rGO aerogels.

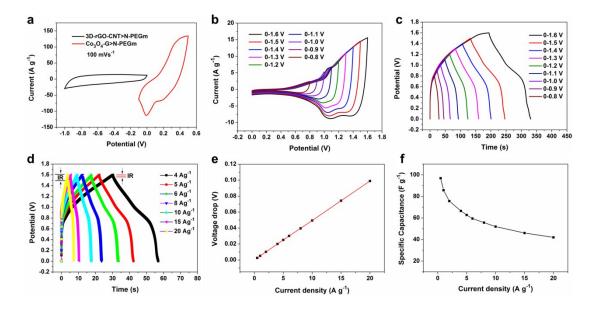


Figure S17. (a-f) and (i-j) TEM images of 3D rGO-CNT>N-PEGm aerogels. (g-h) and (k-l) HRTEM images of 3D rGO-CNT>N-PEGm aerogels.

Figure S18. The electrochemical properties of 3D rGO-CNT>N-PEGm aerogels with various mass ratios (according to rGO / CNT>N-PEGm): (a) CV curves at a scan rate of 100 mV s⁻¹. (b)

Galvanostatic charge-discharge curves at current density of 2 A g⁻¹. (c) The specific capacitance at various current densities. The electrochemical properties of 3D rGO-CNT>N-PEGm aerogels (rGO / CNT>N-PEGm = 40:10): (d) Nyquist plots (the inset shows the equivalent circuit), (e) the initial 20 times galvanostatic charge-discharge curves, and (f) the cycling performance at a current density of 15 A g⁻¹.

Figure S19. (a) CV curves of 3D rGO-CNT>N-PEGm aerogels and Co_3O_4 -G>N-PEGm electrodes performed in a three-electrode configuration in 6 M KOH solution at a scan rate of 100 mV s⁻¹. (b) CV curves of the asymmetric supercapacitors measured at different potential windows (at 100 mV s⁻¹). (c) Galvanostatic charge-discharge curves with the increase of the potential window (at current density of 1 A g⁻¹). (d) The IR drop at the start point of the discharge curves of Co_3O_4 -G>N-PEGm // rGO-CNT>N-PEGm asymmetric supercapacitors. (e) The voltage drop (IR drop) of Co_3O_4 -G>N-PEGm // rGO-CNT>N-PEGm asymmetric supercapacitors. (f) The specific capacitance at various current densities.

Figure S19b shows a series of CV curves measured with different potential windows from 0-0.8 V to 0-1.6 V at 100 mV s⁻¹. At the operating potential window of 1.0 V, the pseudocapacitive redox-peaks in the region from 0.6 to 1.0 V are attributed to the reversible Faradaic redox reactions of the Co_3O_4 -G>N-PEGm positive electrode

material. When the operating potential window increases to 1.6 V, more redox reactions occure for the larger current response. In **Figure S19c**, the galvanostatic charge-discharge curves are measured with the increase of the potential window at current density of 1 A g⁻¹, which correspond to the CV curves of **Figure S19b** with different potential windows. Moreover, they also combine the pseudocapacitance of Co_3O_4 -G>N-PEGm and electrical double-layer capacitance of the 3D rGO-CNT>N-PEGm aerogels.

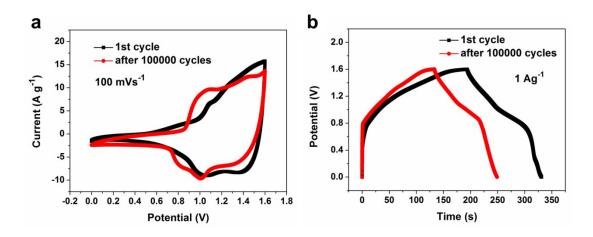

Positive electrode	morphology	Capacit -ance	Current density	Negative	Energy density	Power density	Reten- tion	Cycle	Ref
electrode	(structure)	(F g ⁻¹)	(A g ⁻¹)	electrode	(Wh kg ⁻¹)	(W Kg ⁻¹)	(%)	numbers	
Co ₃ O ₄ @CoWO ₄ /rGO	core/shell nanoneedles	384.7	0.5	rGO	19.1	531.2	88.8	5000	Ref.1
Co ₃ O ₄ @MnO ₂	core/shell arrays	560	0.2	MEGO	17.7	158	81.1	10,000	Ref.2
Co ₃ O ₄ -RGO	aerogel	660	0.5	porous carbon	40.65	340	92.92	2000	Ref.3
Co ₃ O ₄ /rGO	nanoflakes	1112	3.3	AC	23.3	2300	-	20,000	Ref.4
Co ₃ O ₄ /Co ₃ (VO ₄) ₂	hybrid nanorods	847.2	1	AC	38	275	94.7	5000	Ref.5
Ni _x Co _{3x} O ₄	nanowire array	1479	1	AC	37.4	163	82.8	3000	Ref.6
Co ₃ O ₄	MOF (ZIF-67)	504	5 mVs ⁻¹	nanoporous carbon	36	8000	89	2000	Ref.7
Co ₃ O ₄ @Ni(OH) ₂	core-shell	15.83 F cm ⁻²	2.5 mA cm ⁻ 2	rGO	41.90	36.10	-		Ref.8
TiO ₂ @C/ Co ₃ O ₄	ternary hybrid nanocomposites	396.2	1	AC	18.54	222.56	84.6	5000	Ref.9
NCA/Co ₃ O ₄	in situ coating method	616	1	carbon aerogel	33.43	375	92.5	5000	Ref.10
Co ₃ O ₄ @NiMoO ₄	O ₄ @NiMoO ₄ nanocomposites		0.5		41.9		68.7	1000	D (1)
Co ₃ O ₄ @CoMoO ₄	on Ni foam	857	0.5	AC	38		94.2	- 1000	Ref.11
Co ₃ O ₄ @NiMoO ₄	nanosheets array	1526	$\frac{3}{2}$ mA cm ²	AC	37.8	482	-		Ref.12
Co ₃ O ₄ /rGO	nanocomposite	636	1	AC	35.7	225	95	1000	Ref.13
Co ₃ O ₄	nanowires (on Ni foam)	278.4	1	CS aerogel	17.9	750	85	1000	Ref.14
Co ₃ O ₄	nanowire on Ni foam	1217.4	0.7	AC	34	225	~87.7	1500	Ref.1:
Co ₃ O ₄	hollow tube network	1498	0.5	AC	29.5	104	91.4	1000	Ref.10
Co ₃ O ₄ -G>N-PEGm	3D flower-like microspheres	1625.6	0.5	3D GCA	34.4	400	84.7	10,000	Our wo

Table S3. Comparison of the electrochemical properties of the reported cobalt-based electrodes

MEGO: activated microwave exfoliated graphite oxide activated graphene.

CS aerogel: carbon aerogel microspheres.

3D GCA: 3D rGO-CNT>N-PEGm aerogels

Figure S20. The CV curves (at the scan rate of 100 mVs⁻¹) and charge-discharge curves (at the current density of 1 Ag⁻¹) of the 1st and 10000th cycle for the asymmetric supercapacitors.

References

- [1] X. Xu, Y. Yang, M. Wang, P. Dong, R. Baines, J. Shen, M. Ye, *Ceram. Int.* 2016, 42, 10719.
- [2] M. Huang, Y. Zhang, F. Li, L. Zhang, Z. Wen, Q. Liu, J. Power Sources 2014, 252, 98.
- [3] L. Xie, F. Su, L. Xie, X. Li, Z. Liu, Q. Kong, X. Guo, Y. Zhang, L. Wan, K. Li, C. Lv, C. Chen, *Chemsuschem* 2015, *8*, 2917.
- [4] M. Qorbani, T. C. Chou, Y. H. Lee, S. Samireddi, N. Naseri, A. Ganguly, A. Esfandiar, C. H. Wang, L. C. Chen, K. H. Chen, A. Z. Moshfegh, J. Mater. Chem. A 2017, 5, 12569.
- [5] W. Zhang, L. Kong, X. Ma, Y. Luo, L. Kang, J. Power Sources 2014, 269, 61.
- [6] X. Wang, C. Yan, A. Sumboja, P. S. Lee, Nano Energy 2014, 3, 119.
- [7] R. R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. H. Kim, Y. Yamauchi, ACS nano 2015, 9, 6288.

- [8] C. Tang, X. Yin, H. Gong, ACS Appl. Mat. Interfaces 2013, 5, 10574.
- [9] M. Kim, J. Choi, I. Oh, J. Kim, Phys. Chem. Chem. Phys. 2016, 18, 19696.
- [10] G. Sun, L. Ma, J. Ran, X. Shen, H. Tong, J. Mater. Chem. A 2016, 4, 9542.
- [11] X. Ma, L. Kong, W. Zhang, M. Liu, Y. Luo, L. Kang, *Electrochim. Acta* 2014, 130, 660.
- [12] W. Hong, J. Wang, P. Gong, J. Sun, L. Niu, Z. Yang, Z. Wang, S. Yang, J. Power Sources 2014, 270, 516.
- [13] L. Xie, J. Wu, C. Chen, C. Zhang, L. Wan, J. Wang, Q. Kong, C. Lv, K. Li, G. Sun, J. Power Sources 2013, 242, 148.
- [14] W. Liu, X. Li, M. Zhu, X. He, J. Power Sources 2015, 282, 179.
- [15] X. Zhang, Y. Zhao, C. Xu, Nanoscale 2014, 6, 3638.
- [16] J. Li, G. Zan, Q. Wu, J. Mater. Chem. A 2016, 4, 9097.