### Smart Control of Guest Inclusion with α-Cyclodextrin Using its Hydration History

Askar K. Gatiatulin, Viktoria Yu. Osel'skaya, Marat A. Ziganshin, Valery V. Gorbatchuk\*

A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya 18, 420008 Kazan, Russia

Corresponding Author: Prof. Valery V.Gorbatchuk A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia, Fax: +7 843 2927418. Tel: +7 843 2337309. E-mail: Valery.Gorbatchuk@kpfu.ru.

# **Electronic Supplementary Material**

| TG/MS curves for clathrates prepared with saturation of $aCD \cdot 5.9H_2O$ hexahydrate                             | 2    |
|---------------------------------------------------------------------------------------------------------------------|------|
| TG/MS curves for clathrates prepared with saturation of tetrahydrate A                                              | 5    |
| TG/MS curves for clathrates with saturation of tetrahydrate <b>B</b>                                                | 8    |
| TG/MS curves for clathrates prepared with saturation of hexahydrate $aCD \cdot 5.9H_2O$ in the prese of a desiccant | ence |
| TG/DSC/MS curves for the tetrahydrate <b>B</b> and ternary clathrates with EtCN                                     | 13   |
| X-Ray powder diffraction data                                                                                       | 14   |
| X-Ray powder diffractograms                                                                                         | 18   |
| Indexation of X-Ray powder diffractogram for anhydrous aCD                                                          | 22   |
| Sorption isotherm data                                                                                              | 23   |
| Data on kinetics of dehydration for tetrahydrate A                                                                  | 24   |
| Data on kinetics of dehydration for tetrahydrate <b>B</b>                                                           | 26   |
| Data on kinetics of water and EtCN release from ternary aCD clathrates                                              | 28   |
| References                                                                                                          | 35   |



TG/MS curves for clathrates prepared with saturation of aCD·5.9H<sub>2</sub>O hexahydrate

Figure S1. Product of saturation of aCD·5.9H<sub>2</sub>O hexahydrate with benzene vapor (no benzene inclusion).



Figure S2. Product of saturation of aCD·5.9H<sub>2</sub>O hexahydrate with MeOH vapor: aCD·2.2CH<sub>3</sub>OH·2.3H<sub>2</sub>O.



Figure S3. Product of saturation of aCD·5.9H<sub>2</sub>O hexahydrate with EtOH vapor: aCD·1.0EtOH·3.5H<sub>2</sub>O.



Figure S4. Product of saturation of a CD  $\cdot$  5.9H<sub>2</sub>O hexahydrate with acetone vapor: a CD  $\cdot$  0.2(CH<sub>3</sub>)<sub>2</sub>CO  $\cdot$  3.5H<sub>2</sub>O hexahydrate with acetone vapor: a CD  $\cdot$  0.2(CH<sub>3</sub>)<sub>2</sub>CO  $\cdot$  3.5H<sub>2</sub>O hexahydrate with acetone vapor: a CD  $\cdot$  0.2(CH<sub>3</sub>)<sub>2</sub>CO  $\cdot$  3.5H<sub>2</sub>O hexahydrate with acetone vapor: a CD  $\cdot$  0.2(CH<sub>3</sub>)<sub>2</sub>CO  $\cdot$  3.5H<sub>2</sub>O



Figure S5. Product of saturation of aCD 5.9H2O hexahydrate with n-PrOH vapor: aCD 0.3n-PrOH 5H2O



Figure S6. Product of saturation of aCD 5.9H<sub>2</sub>O hexahydrate with benzene EtCN vapor (no EtCN inclusion).



Figure S7. Product of saturation of aCD 5.9H<sub>2</sub>O hexahydrate with nitromethane vapor (no nitromethane inclusion).



TG/MS curves for clathrates prepared with saturation of tetrahydrate A

Figure S8. Product of saturation of aCD tetrahydrate A with benzene vapor (no benzene inclusion).



Figure S9. Product of saturation of aCD tetrahydrate A with EtCN vapor (aCD 0.9EtCN 3.8H<sub>2</sub>O).



Figure S10. Product of saturation of aCD tetrahydrate A with nitromethane vapor (aCD 1.4MeNO<sub>2</sub> 2.0H<sub>2</sub>O).



Figure S11. Product of saturation of aCD tetrahydrate A with dichloromethane vapor (aCD · 0.4CH<sub>2</sub>Cl<sub>2</sub> · 3.0H<sub>2</sub>O).



Figure S12. Product of saturation of aCD tetrahydrate A with n-PrOH vapor (aCD 0.9n-PrOH 4.3H<sub>2</sub>O).



Figure S13. Product of saturation of aCD tetrahydrate A with acetone vapor (aCD · 1.2(CH<sub>3</sub>)<sub>2</sub>CO · 2.3H<sub>2</sub>O).





Figure S14. Product of saturation of aCD tetrahydrate **B** with benzene vapor (no benzene inclusion).



Figure S15. Product of saturation of aCD tetrahydrate **B** with EtCN vapor (aCD·1.0EtCN·4.1H<sub>2</sub>O).



Figure S16. Product of saturation of aCD tetrahydrate **B** with nitromethane vapor (aCD 0.6MeNO<sub>2</sub> · 4.5H<sub>2</sub>O).



Figure S17. Product of saturation of aCD tetrahydrate **B** with dichloromethane vapor (aCD·0.3CH<sub>2</sub>Cl<sub>2</sub>·4.0H<sub>2</sub>O).



Figure S18. Product of saturation of aCD tetrahydrate **B** with *n*-propanol vapor (aCD · 0.5*n*-PrOH · 4.7H<sub>2</sub>O).



Figure S19. Product of saturation of aCD tetrahydrate **B** with acetone vapor  $(aCD \cdot 0.3(CH_3)_2CO \cdot 4.0H_2O)$ .

TG/MS curves for clathrates prepared with saturation of hexahydrate a CD·5.9H $_2$ O in the presence of a desiccant



Figure S20. Product of saturation of aCD·5.9H<sub>2</sub>O hexahydrate with benzene vapor in the presence of a desiccant (no benzene inclusion).



Figure S21. Product of saturation of  $aCD \cdot 5.9H_2O$  hexahydrate with EtCN vapor in the presence of a desiccant ( $aCD \cdot 1.1EtCN \cdot 3.6H_2O$ ).



Figure S22. Product of saturation of aCD·5.9H<sub>2</sub>O hexahydrate with nitromethane vapor in the presence of a desiccant (aCD·1.0MeNO<sub>2</sub>·3.0H<sub>2</sub>O).



Figure S23. Product of saturation of aCD $\cdot$ 5.9H<sub>2</sub>O hexahydrate with acetone vapor in the presence of a desiccant (aCD $\cdot$ 1.3(CH<sub>3</sub>)<sub>2</sub>CO $\cdot$ 2.7H<sub>2</sub>O).



Figure S24. Product of saturation of  $aCD \cdot 5.9H_2O$  hexahydrate with n-propanol vapor in the presence of a desiccant ( $aCD \cdot 1.1n$ -PrOH  $\cdot 3.0H_2O$ ).





Figure S25. Tetrahydrate B.



Figure S26. Product of saturation of aCD tetrahydrate A with EtCN vapor (aCD  $\cdot 0.9$  EtCN  $\cdot 3.8$  H<sub>2</sub>O).



Figure S27. Product of saturation of aCD tetrahydrate **B** with EtCN vapor (aCD·1.0EtCN·4.1H<sub>2</sub>O).

| peak<br>No. | 20 (°) | d (Å)   | Height(counts) | FWHM(°) | Relative<br>intensity<br>(%) | Asym.<br>factor |
|-------------|--------|---------|----------------|---------|------------------------------|-----------------|
| 1           | 4.919  | 17.5354 | 1726.9         | 0.2103  | 16.54                        | 2.5985          |
| 2           | 6.537  | 13.2886 | 146.9          | 0.2544  | 1.47                         | 0.9218          |
| 3           | 9.534  | 9.1860  | 3221.9         | 0.2963  | 35.80                        | 1.1518          |
| 4           | 9.816  | 8.9277  | 790.8          | 0.1656  | 4.91                         | 0.5654          |
| 5           | 12.179 | 7.2321  | 4230.6         | 0.4557  | 82.51                        | 4.8649          |
| 6           | 12.488 | 7.0576  | 479.6          | 0.4001  | 10.70                        | 0.4626          |
| 7           | 13.322 | 6.6267  | 4204.5         | 0.4817  | 100.00                       | 0.589           |
| 8           | 13.765 | 6.4196  | 2233.8         | 0.2206  | 20.21                        | 4.3998          |
| 9           | 14.798 | 5.9839  | 796.5          | 0.2893  | 8.64                         | 1.1502          |
| 10          | 15.640 | 5.6716  | 1003.6         | 0.3215  | 12.10                        | 1.1605          |
| 11          | 16.057 | 5.5292  | 532.2          | 0.2775  | 5.54                         | 0.7593          |
| 12          | 16.574 | 5.3627  | 105.1          | 0.2553  | 1.01                         | 2.793           |
| 13          | 18.271 | 4.8827  | 1348.0         | 0.6622  | 56.05                        | 0.4539          |
| 14          | 19.742 | 4.5342  | 1446.6         | 0.3135  | 21.48                        | 2.7261          |
| 15          | 20.130 | 4.4508  | 521.4          | 0.3944  | 13.45                        | 0.3169          |
| 16          | 20.651 | 4.3440  | 250.9          | 0.2272  | 3.36                         | 0.7104          |
| 17          | 21.153 | 4.2461  | 493.4          | 0.5548  | 16.27                        | 0.6762          |
| 18          | 21.919 | 4.1054  | 2705.7         | 0.3901  | 56.82                        | 1.2509          |
| 19          | 22.903 | 3.9390  | 486.8          | 0.6161  | 19.72                        | 0.3015          |
| 20          | 24.031 | 3.7653  | 97.3           | 0.0865  | 0.45                         | 1.325           |
| 21          | 24.786 | 3.6581  | 195.6          | 0.518   | 5.80                         | 0.8652          |
| 22          | 25.547 | 3.5568  | 561.7          | 0.323   | 7.98                         | 4.6633          |
| 23          | 26.486 | 3.4399  | 557.0          | 0.2881  | 6.95                         | 1.1155          |
| 24          | 26.994 | 3.3801  | 589.4          | 0.5197  | 13.58                        | 0.8013          |
| 25          | 28.056 | 3.2626  | 257.4          | 0.2921  | 3.41                         | 0.5635          |
| 26          | 29.058 | 3.1600  | 366.0          | 0.6388  | 9.78                         | 1.842           |
| 27          | 30.492 | 3.0253  | 325.3          | 0.442   | 5.96                         | 2.1048          |
| 28          | 31.212 | 2.9626  | 580.6          | 0.8652  | 23.03                        | 0.474           |
| 29          | 33.061 | 2.8149  | 519.6          | 0.401   | 9.16                         | 0.8974          |
| 30          | 33.781 | 2.7620  | 526.4          | 0.3853  | 8.56                         | 1.6299          |
| 31          | 34.572 | 2.7067  | 542.4          | 0.4945  | 11.54                        | 1.2261          |
| 32          | 36.048 | 2.6104  | 267.5          | 0.3383  | 4.18                         | 0.6361          |
| 33          | 36.964 | 2.5549  | 301.1          | 0.41    | 5.65                         | 1.2618          |
| 34          | 38.187 | 2.4853  | 251.2          | 0.3486  | 4.07                         | 0.4315          |
| 35          | 39.868 | 2.3973  | 189.4          | 3.6532  | 27.37                        | 4.997           |

X-Ray powder diffraction data Table S1. PXRD data table for tetrahydrate A (Form IIIa).

| peak<br>No. | 20 (°) | d (Å)   | Height(counts) | FWHM(°) | Relative<br>intensity<br>(%) | Asym.<br>factor |
|-------------|--------|---------|----------------|---------|------------------------------|-----------------|
| 1           | 5.011  | 17.6370 | 433.1          | 0.239   | 5.79                         | 2.8157          |
| 2           | 6.115  | 14.4622 | 36.2           | 0.4688  | 0.83                         | 0.5924          |
| 3           | 9.436  | 9.3968  | 1177.4         | 0.3417  | 16.60                        | 0.9891          |
| 4           | 10.479 | 8.4703  | 236.0          | 0.3196  | 3.16                         | 3.3676          |
| 5           | 11.663 | 7.6208  | 1243.7         | 0.6654  | 47.49                        | 0.3172          |
| 6           | 11.961 | 7.4339  | 3455.8         | 0.3161  | 53.28                        | 4.8725          |
| 7           | 13.294 | 6.6998  | 2538.2         | 0.331   | 39.50                        | 1.7058          |
| 8           | 14.115 | 6.3175  | 3346.9         | 0.2831  | 41.31                        | 4.3347          |
| 9           | 14.975 | 5.9621  | 1087.0         | 0.2962  | 14.27                        | 3.4181          |
| 10          | 15.683 | 5.6992  | 1344.5         | 0.4593  | 27.16                        | 3.804           |
| 11          | 16.841 | 5.3175  | 391.3          | 0.2541  | 3.99                         | 1.4678          |
| 12          | 17.881 | 5.0177  | 979.7          | 0.5946  | 25.90                        | 0.4803          |
| 13          | 18.591 | 4.8323  | 1049.1         | 0.7771  | 36.40                        | 0.4159          |
| 14          | 18.930 | 4.7488  | 1240.4         | 0.2362  | 12.77                        | 0.8932          |
| 15          | 19.376 | 4.6435  | 1120.3         | 0.2904  | 13.75                        | 2.3164          |
| 16          | 19.718 | 4.5662  | 1279.3         | 0.4304  | 24.21                        | 0.6884          |
| 17          | 19.917 | 4.5224  | 921.6          | 2.3907  | 100.00                       | 0.2032          |
| 18          | 21.503 | 4.2029  | 4711.5         | 0.328   | 64.77                        | 3.1223          |
| 19          | 21.992 | 4.1141  | 1761.5         | 0.3896  | 28.96                        | 2.4226          |
| 20          | 22.575 | 4.0131  | 1574.4         | 0.2823  | 18.82                        | 2.1531          |
| 21          | 23.391 | 3.8806  | 1233.4         | 0.381   | 20.31                        | 1.1631          |
| 22          | 23.862 | 3.8084  | 763.0          | 0.4022  | 12.79                        | 3.9144          |
| 23          | 24.180 | 3.7612  | 561.0          | 0.4187  | 9.74                         | 4.9863          |
| 24          | 25.443 | 3.5860  | 739.9          | 0.5201  | 16.43                        | 1.6631          |
| 25          | 27.110 | 3.3807  | 1041.3         | 0.5779  | 24.95                        | 5               |
| 26          | 27.642 | 3.3206  | 538.3          | 0.5944  | 13.84                        | 1.1222          |
| 27          | 28.543 | 3.2243  | 467.8          | 0.3045  | 6.04                         | 2.041           |
| 28          | 29.022 | 3.1756  | 532.0          | 0.3496  | 7.71                         | 4.9953          |
| 29          | 30.069 | 3.0748  | 641.2          | 0.316   | 8.52                         | 2.716           |
| 30          | 30.434 | 3.0414  | 662.6          | 0.4735  | 13.64                        | 0.9742          |
| 31          | 30.852 | 3.0042  | 589.4          | 0.2417  | 6.17                         | 1.0997          |
| 32          | 31.542 | 2.9450  | 455.7          | 0.8012  | 16.26                        | 0.4529          |
| 33          | 33.109 | 2.8204  | 662.8          | 0.693   | 19.05                        | 4.9857          |
| 34          | 34.194 | 2.7413  | 300.4          | 0.5967  | 7.80                         | 0.9489          |
| 35          | 34.956 | 2.6889  | 904.9          | 0.5208  | 20.47                        | 0.9966          |
| 36          | 36.007 | 2.6206  | 281.5          | 0.4552  | 5.57                         | 0.9633          |
| 37          | 36.916 | 2.5649  | 674.9          | 0.8842  | 26.28                        | 0.6568          |
| 38          | 38.479 | 2.4760  | 643.7          | 0.6355  | 17.34                        | 2.071           |
| 39          | 39.484 | 2.4229  | 569.8          | 0.5195  | 12.84                        | 1.025           |
| 40          | 40.949 | 2.3507  | 215.1          | 0.2978  | 2.73                         | 1.8055          |
| 41          | 41.751 | 2.3136  | 181.0          | 0.7449  | 5.63                         | 3.4609          |
| 42          | 42.477 | 2.2814  | 174.2          | 0.666   | 4.93                         | 1.9006          |

Table S2. PXRD data table for tetrahydrate **B** (Form **I**).

| peak<br>No. | 20 (°) | d (Å)   | Height(counts) | FWHM(°) | Relative<br>intensity<br>(%) | Asym.<br>factor |
|-------------|--------|---------|----------------|---------|------------------------------|-----------------|
| 1           | 5.692  | 15.5338 | 202.8          | 0.3204  | 3.07                         | 1.2243          |
| 2           | 7.451  | 11.8800 | 1932.3         | 0.3081  | 29.56                        | 1.3056          |
| 3           | 9.664  | 9.1778  | 170.8          | 0.3959  | 3.57                         | 3.2849          |
| 4           | 11.470 | 7.7474  | 710.9          | 0.5855  | 28.26                        | 0.6397          |
| 5           | 12.989 | 6.8542  | 2058.8         | 0.4621  | 52.69                        | 2.3407          |
| 6           | 14.914 | 5.9862  | 418.0          | 0.5081  | 10.38                        | 1.9101          |
| 7           | 16.164 | 5.5341  | 356.4          | 0.6917  | 12.09                        | 1.8234          |
| 8           | 17.126 | 5.2316  | 202.7          | 0.5312  | 5.63                         | 0.8144          |
| 9           | 18.408 | 4.8788  | 246.3          | 7.1875  | 100.00                       | 0.2476          |
| 10          | 19.845 | 4.5382  | 3240.4         | 0.4965  | 80.19                        | 1.4838          |
| 11          | 22.512 | 4.0237  | 591.4          | 1.0086  | 28.92                        | 2.1096          |
| 12          | 27.075 | 3.3848  | 210.0          | 0.7638  | 8.00                         | 0.7067          |
| 14          | 33.667 | 2.7790  | 132.7          | 2.064   | 11.82                        | 0.7339          |

Table S3. PXRD data table for aCD $\cdot 1.3$ (CH<sub>3</sub>)<sub>2</sub>CO $\cdot 2.7$ H<sub>2</sub>O clathrate prepared in "hexahydrate+desiccant+guest" system (columnar packing type).

Table S4. PXRD data table for aCD $\cdot$ 1.1EtCN $\cdot$ 3.6H<sub>2</sub>O clathrate prepared in "hexahydrate+desiccant+guest" system (Form **III** packing type).

| peak<br>No. | 20 (°) | d (Å)   | Height(counts) | FWHM(°) | Relative<br>intensity<br>(%) | Asym.<br>factor |
|-------------|--------|---------|----------------|---------|------------------------------|-----------------|
| 1           | 4.693  | 18.8145 | 622.5          | 0.2244  | 12.6                         | 1.4836          |
| 2           | 6.743  | 13.0991 | 121.0          | 0.3125  | 2.5                          | 2.9897          |
| 3           | 8.014  | 11.0236 | 194.8          | 0.4374  | 5.9                          | 3.6165          |
| 4           | 9.398  | 9.4026  | 934.2          | 0.2643  | 16.4                         | 1.7307          |
| 5           | 9.627  | 9.1799  | 1070.7         | 0.281   | 20.2                         | 0.959           |
| 6           | 10.468 | 8.4442  | 243.4          | 0.2053  | 3.2                          | 1.4706          |
| 7           | 11.712 | 7.5495  | 2481.2         | 0.2871  | 49.2                         | 2.1308          |
| 8           | 12.225 | 7.2342  | 1339.9         | 0.8305  | 84.1                         | 0.2518          |
| 9           | 12.547 | 7.0493  | 1973.4         | 0.2026  | 27.9                         | 1.7335          |
| 10          | 13.294 | 6.6547  | 4389.4         | 0.3285  | 100.0                        | 1.9593          |
| 11          | 13.705 | 6.4559  | 647.7          | 0.2485  | 11.2                         | 1.9837          |
| 12          | 14.684 | 6.0277  | 1059.4         | 0.2932  | 21.5                         | 2.0316          |
| 13          | 15.564 | 5.6889  | 330.8          | 0.4144  | 12.2                         | 0.5476          |
| 14          | 16.339 | 5.4207  | 639.7          | 0.4253  | 19.5                         | 4.9811          |
| 15          | 17.031 | 5.2020  | 315.3          | 0.5264  | 14.5                         | 0.6545          |
| 16          | 17.678 | 5.0131  | 360.6          | 0.2259  | 6.5                          | 1.6164          |
| 17          | 18.185 | 4.8745  | 1231.7         | 0.3709  | 37.2                         | 1.2991          |
| 18          | 18.961 | 4.6765  | 906.9          | 0.3064  | 21.8                         | 1.8611          |
| 19          | 19.612 | 4.5229  | 1796.2         | 0.4911  | 70.8                         | 1.461           |
| 20          | 20.079 | 4.4188  | 1571.5         | 0.3228  | 40.2                         | 1.6421          |
| 21          | 21.108 | 4.2056  | 1111.8         | 0.3829  | 33.7                         | 1.658           |
| 22          | 21.615 | 4.1080  | 931.9          | 0.3834  | 26.1                         | 3.9454          |
| 23          | 22.247 | 3.9928  | 4017.2         | 0.4685  | 139.6                        | 3.2879          |
| 24          | 23.138 | 3.8410  | 1290.7         | 0.7091  | 73.5                         | 1.463           |
| 25          | 24.643 | 3.6098  | 231.3          | 0.4499  | 8.6                          | 1.1261          |
| 26          | 25.522 | 3.4874  | 650.7          | 0.3749  | 17.5                         | 4.9323          |
| 27          | 26.213 | 3.3970  | 92.7           | 0.2041  | 1.8                          | 0.2803          |
| 28          | 26.905 | 3.3112  | 382.1          | 0.3655  | 11.3                         | 1.3058          |
| 29          | 27.797 | 3.2068  | 388.3          | 0.4515  | 15.0                         | 0.8041          |
| 30          | 28.463 | 3.1333  | 423.0          | 0.3488  | 11.6                         | 1.7515          |
| 31          | 29.140 | 3.0620  | 353.4          | 0.297   | 8.6                          | 1.182           |
| 32          | 30.574 | 2.9216  | 259.9          | 0.5498  | 11.4                         | 1.5737          |
| 33          | 31.222 | 2.8625  | 488.5          | 0.7436  | 32.6                         | 0.4897          |
| 34          | 33.045 | 2.7086  | 518.8          | 0.4298  | 16.6                         | 3.2194          |
| 35          | 34.418 | 2.6036  | 343.4          | 1.2004  | 32.0                         | 2.0452          |
| 36          | 37.122 | 2.4199  | 181.0          | 0.257   | 3.3                          | 5               |
| 37          | 38.334 | 2.3462  | 150.2          | 0.1883  | 2.4                          | 2.2309          |
| 38          | 39.544 | 2.2771  | 235.8          | 0.9469  | 19.6                         | 1.8003          |

X-Ray powder diffractograms



Figure S28. Powder diffractograms for: (a) aCD·7.57H<sub>2</sub>O hydrate (Form **III**) simulated from single crystal XRD data<sup>1</sup>; (b) aCD·0.9EtCN·3.8H<sub>2</sub>O prepared from tetrahydrate **A**.



Figure S29. Powder diffractograms for clathrates prepared from aCD tetrahydrate A: (red) aCD  $\cdot 0.9C_2H_5CN \cdot 3.8H_2O$ ; (orange) aCD  $\cdot 1.4CH_3NO_2 \cdot 2.0H_2O$ ; (green) aCD  $\cdot 1.2(CH_3)_2CO \cdot 2.3H_2O$ ; (blue) aCD  $\cdot 0.4CH_2CI_2 \cdot 3.0H_2O$ .



Figure S30. Powder diffractograms for clathrates prepared from aCD tetrahydrate **B**: (red) aCD·0.5*n*-C<sub>3</sub>H<sub>7</sub>OH·4.7H<sub>2</sub>O; (orange) aCD·0.3CH<sub>2</sub>Cl<sub>2</sub>·4.0H<sub>2</sub>O; (green) aCD·0.3(CH<sub>3</sub>)<sub>2</sub>CO·4.0H<sub>2</sub>O; (blue) aCD·1.0C<sub>2</sub>H<sub>5</sub>CN·4.1H<sub>2</sub>O.



Figure S31. Powder diffractograms for aCD clathrates prepared in "hexahydrate+desiccant+guest" system: (red) aCD  $\cdot 1.1n$ -C<sub>3</sub>H<sub>7</sub>OH  $\cdot 3.0$ H<sub>2</sub>O; (orange) aCD  $\cdot 1.3$ (CH<sub>3</sub>)<sub>2</sub>CO  $\cdot 2.7$ H<sub>2</sub>O; (green) aCD  $\cdot 1.0$ CH<sub>2</sub>Cl<sub>2</sub> $\cdot 2.0$ H<sub>2</sub>O; (blue) aCD  $\cdot 1.1$ C<sub>2</sub>H<sub>5</sub>CN  $\cdot 3.6$ H<sub>2</sub>O.



Figure S32. Powder diffractograms for columnar phase of (a)  $aCD \cdot 1.3(CH_3)_2CO \cdot 2.7H_2O$  prepared in "hexahydrate+desiccant+guest" system and products of its heating: (b)  $aCD \cdot 0.6(CH_3)_2CO \cdot 1.9H_2O$  annealed at 90°C in vacuum; (c)  $aCD \cdot 0.3(CH_3)_2CO \cdot 1.6H_2O$  annealed at 120°C in vacuum; (d)  $aCD \cdot 0.7H_2O$  annealed at 180°C.



Figure S33. Powder diffractograms of aCD clathrates prepared with saturation of aCD hexahydrate with vapor of: (red) nitromethane; (orange) 1-propanol; (green) propionitrile; (blue) dichloromethane; (violet) acetone. No desiccant was added.



Figure 34. Powder diffractograms of aCD clathrates prepared with saturation of aCD hexahydrate with vapor of: (red) methanol; (orange) ethanol. No desiccant was added.



Figure S35. Powder diffractogram of anhydrous aCD<sup>1</sup> with peaks of SRM 640d standard.

| Table S5. Unit cell parameters for various forms of aCD* |        |        |       |                   |  |
|----------------------------------------------------------|--------|--------|-------|-------------------|--|
|                                                          | a, Å   | b, Å   | c, Å  | V, Å <sup>3</sup> |  |
| Form IIIa (anhydrous aCD)                                | 14.135 | 36.030 | 7.437 | 3787.41           |  |
| Form III $(aCD \cdot 7.57H_2O)^2$                        | 14.356 | 37.538 | 9.400 | 5065.62           |  |
| Form I $(aCD \cdot 6H_2O)^3$                             | 13.700 | 29.35  | 11.92 | 4792.97           |  |
| All forms have $P2_12_12_1$ space group.                 |        |        |       |                   |  |



Figure S36. Experimental XRPD pattern (blue), best fit (red) and differential curve (purple) for dried aCD ( $R_{wp} = 6.781$ ). Blue vertical bars represent Bragg positions for the calculated unit cell and P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> space group.

## Sorption isotherm data

| 1-propanol activity,<br>$P/P_0$ | 1-propanol inclusion,<br>mol per mol aCD, A | Sorption affinity,<br>$A/(P/P_0)$ | aCD hydration, mol water per mol aCD, <i>h</i> | Hydration degree $h/h_{\rm max}$ |
|---------------------------------|---------------------------------------------|-----------------------------------|------------------------------------------------|----------------------------------|
| 0.0001                          | 0.0001                                      | ~1                                | 0.1                                            | 0.02                             |
| 0.0007                          | 0.06                                        | 81.5                              | 1.0                                            | 0.17                             |
| 0.0014                          | 0.12                                        | 84.6                              | 2.1                                            | 0.35                             |
| 0.0220                          | 0.17                                        | 7.9                               | 3.0                                            | 0.50                             |
| 0.0194                          | 0.24                                        | 12.4                              | 4.2                                            | 0.69                             |
| 0.0415                          | 0.27                                        | 6.5                               | 4.7                                            | 0.78                             |

Table S6. Data on the sorption isotherm of 1-propanol with initially anhydrous aCD for simultaneous sorption of guest and water at constant guest/water molar ratio 1:17.

## Data on kinetics of dehydration for tetrahydrate A

| Table S7. Activation energy  | $E_{\rm a}$ and logarithm of the pre- | exponential factor A for the | reaction of aCD dehydration |
|------------------------------|---------------------------------------|------------------------------|-----------------------------|
| obtained by various approxin | nation methods.                       |                              |                             |
| Model                        | Method                                | E kI.mol-l                   | $\log 4 \text{ s}^{-1}$     |

| Model                                                                                                    | Method           | $E_{\rm a}, \rm kJ \cdot mol^{-1}$ | $\log A$ , s <sup>-1</sup> |
|----------------------------------------------------------------------------------------------------------|------------------|------------------------------------|----------------------------|
| -                                                                                                        | Friedman         | 74±11.5                            | 8.51                       |
| -                                                                                                        | Ozawa-Flynn-Wall | 74±9.3                             | 8.59                       |
| An, <i>n</i> -dimensional<br>nucleation according to<br>Avrami-Erofeev<br>(n=0.58)<br>Corr. coef 0.99915 | lin. regr.       | 79                                 | 9.15                       |

Friedman Analysis E/(kJ/mol) 160 -140 • 120 · 100 80 60 · 40 1.0 0.2 0.4 0.6 0.8 Fract.Mass Loss

Figure S37. Friedman analysis for the process of the tetrahydrate A dehydration.



Figure S38. Ozawa-Flynn-Wall analysis for the process of the tetrahydrate A dehydration.



Figure S39. Approximation of TG curves with model method ( $A_n$ , n - dimensional nucleation according to Avrami-Erofeev).

#### Data on kinetics of dehydration for tetrahydrate B

| Model                                                                                                                | Method           | $E_{\rm a}$ , kJ·mol <sup>-1</sup> | $\log A$ , s <sup>-1</sup> |  |  |
|----------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|----------------------------|--|--|
| -                                                                                                                    | Friedman         | 47±15.8                            | 4.34                       |  |  |
| -                                                                                                                    | Ozawa-Flynn-Wall | 49±12.1                            | 4.60                       |  |  |
| CnB, reaction of <i>n</i> <sup>th</sup> order<br>with autocatalysis by<br>product<br>(n=1.39)<br>Corr. coeff. 0.9965 | lin. regr.       | 52                                 | 4.99                       |  |  |

Table S8. Activation energy  $E_a$  and logarithm of the pre-exponential factor A for the reaction of aCD dehydration obtained by various approximation methods.



Figure S40. Friedman analysis for the process of the tetrahydrate **B** dehydration.



Figure S41. Ozawa-Flynn-Wall analysis for the process of the tetrahydrate **B** dehydration.



Figure S42. Approximation of TG curves with model method (CnB, n-th order with autocatalysis with product).

#### Data on kinetics of water and EtCN release from ternary aCD clathrates

Table S9. Activation energy  $E_a$  and logarithm of the pre-exponential factor A for the reaction of water removal (1<sup>st</sup> step of decomposition) from aCD  $\cdot 0.9C_2H_5CN \cdot 3.8H_2O$  prepared from tetrahydrate A.

| Model                                             | Method           | $E_{\rm a}$ , kJ·mol <sup>-1</sup> | $\log A$ , s <sup>-1</sup> |
|---------------------------------------------------|------------------|------------------------------------|----------------------------|
| -                                                 | Friedman         | 69±16.6                            | 7.78                       |
| -                                                 | Ozawa-Flynn-Wall | 68±7.0                             | 7.58                       |
| Fn (reaction of $n^{\text{th}}$ order,<br>n=1.72) | lin. regr.       | 66                                 | 7.40                       |
| Corr. coeff. 0.99902                              |                  |                                    |                            |

Table S10. Activation energy  $E_a$  and logarithm of the pre-exponential factor A for the reaction of EtCN removal (2<sup>nd</sup> step of decomposition) from aCD  $\cdot 0.9C_2H_5CN \cdot 3.8H_2O$  prepared from tetrahydrate A.

| 1 1 /                                                                             | 2 5 2 1          | 1 5                                |                            |
|-----------------------------------------------------------------------------------|------------------|------------------------------------|----------------------------|
| Model                                                                             | Method           | $E_{\rm a}$ , kJ·mol <sup>-1</sup> | $\log A$ , s <sup>-1</sup> |
| -                                                                                 | Friedman         | 107-159                            | 9.7-15.4                   |
| -                                                                                 | Ozawa-Flynn-Wall | 106-138                            | 9.8-13.6                   |
| D1F, one-dimensional<br>diffusion according to<br>Fick's law<br>Corr. coef 0.9989 | lin. regr.       | 117                                | 9.79                       |

Table S11. Activation energy  $E_a$  and logarithm of the pre-exponential factor A for the reaction of water removal (1<sup>st</sup> step of decomposition) from aCD  $\cdot 1.0C_2H_5CN \cdot 4.1H_2O$  prepared from tetrahydrate **B**.

| Model                                                                                                       | Method           | $E_{\rm a}$ , kJ·mol <sup>-1</sup> | $\log A$ , s <sup>-1</sup> |
|-------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|----------------------------|
| -                                                                                                           | Friedman         | 56±13.4                            | 5.84                       |
| -                                                                                                           | Ozawa-Flynn-Wall | 56±12.2                            | 5.73                       |
| CnB, reaction of $n^{\text{th}}$ order<br>with autocatalysis by<br>product<br>(n=1.37)<br>Corr. coef 0.9971 | lin. regr.       | 58                                 | 5.90                       |

Table S12. Activation energy  $E_a$  and logarithm of the pre-exponential factor A for the reaction of EtCN removal (2<sup>nd</sup> step of decomposition) from aCD·1.0C<sub>2</sub>H<sub>5</sub>CN·4.1H<sub>2</sub>O prepared from tetrahydrate **B**.

| Model                                                                                                            | Method           | $E_{\rm a}$ , kJ·mol <sup>-1</sup> | $\log A$ , s <sup>-1</sup> |
|------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|----------------------------|
| -                                                                                                                | Friedman         | 113-171                            | 10.2-16.5                  |
| -                                                                                                                | Ozawa-Flynn-Wall | 90-145                             | 8.3-13.5                   |
| An, <i>n</i> -dimensional<br>nucleation according to<br>Avrami-Erofeev<br>( <i>n</i> =0.87)<br>Corr. coef 0.9980 | lin. regr.       | 127                                | 11.9                       |



Figure S43. Approximation of TG curves (1 step for  $aCD \cdot 0.9C_2H_5CN \cdot 3.8H_2O$  prepared from tetrahydrate A) with model method (Fn).



Figure S44. Friedman analysis for the 1 step of decomposition of  $aCD \cdot 0.9C_2H_5CN \cdot 3.8H_2O$  prepared from tetrahydrate A



Figure S45. Ozawa-Flynn-Wall analysis for the 1 step of decomposition of  $aCD \cdot 0.9C_2H_5CN \cdot 3.8H_2O$  prepared from tetrahydrate A



Figure S46. Approximation of TG curves (2nd step for  $aCD \cdot 0.9C_2H_5CN \cdot 3.8H_2O$  prepared from tetrahydrate A) with model method (D1F).



Figure S47. Friedman analysis for the 2nd step of decomposition of  $aCD \cdot 0.9C_2H_5CN \cdot 3.8H_2O$  prepared from tetrahydrate A





Figure S48. Ozawa-Flynn-Wall analysis for the 2nd step of decomposition of  $aCD \cdot 0.9C_2H_5CN \cdot 3.8H_2O$  prepared from tetrahydrate A



Figure S49. Approximation of TG curves (1st step for  $aCD \cdot 1.0C_2H_5CN \cdot 4.1H_2O$  prepared from tetrahydrate **B**) with model method (CnB).



Figure S50. Friedman analysis for the 1 step of decomposition of  $aCD \cdot 1.0C_2H_5CN \cdot 4.1H_2O$  prepared from tetrahydrate **B**.



Figure S51. Ozawa-Flynn-Wall analysis for the 1 step of decomposition of  $aCD \cdot 1.0C_2H_5CN \cdot 4.1H_2O$  prepared from tetrahydrate **B**.



Figure S52. Approximation of TG curves (2nd step for  $aCD \cdot 1.0C_2H_5CN \cdot 4.1H_2O$  prepared from tetrahydrate **B**) with model method (An).



Figure S53. Friedman analysis for the 2nd step of decomposition of  $aCD \cdot 1.0C_2H_5CN \cdot 4.1H_2O$  prepared from tetrahydrate **B**.



Figure S54. Ozawa-Flynn-Wall analysis for the 2nd step of decomposition of  $aCD \cdot 1.0C_2H_5CN \cdot 4.1H_2O$  prepared from tetrahydrate **B**.

#### References

- A. K. Gatiatulin, V. Y. Osel'skaya, M. A. Ziganshin and V. V. Gorbatchuk, Size exclusion effect in binary inclusion compounds of α-cyclodextrin, Phys. Chem. Chem. Phys., 2018, 20, 26105–26116. DOI: 10.1039/c8cp03104e
- K. K. Chacko and W. Saenger, Topography of cyclodextrin inclusion complexes. 15. Crystal and molecular structure of the cyclohexaamylose-7.57 water complex, form III. Four- and sixmembered circular hydrogen bonds, J. Am. Chem. Soc., 1981, 103, 1708–1715. DOI: 10.1021/ja00397a021
- K. Lindner and W. Saenger, Topography of cyclodextrin inclusion complexes. XVI. Cyclic system of hydrogen bonds: structure of α-cyclodextrin hexahydrate, form (II): comparison with form (I), Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 1982, 38, 203–210. DOI: 10.1107/S0567740882002386