Crystal and Molecular Structure of CP881.

C52H66N4P2V2

G.Liu, A. Meetsma,^{*1} B. Hessen,^{*2} Groningen Center for Catalysis and Synthesis, Department of Organic and Molecular Inorganic Chemistry, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands.

^{*1} Correspondence pertaining to crystallographic studies to this author.

E-mail address: A.Meetsma@fwn.rug.nl

^{*2} author to whom correspondence should be addressed.

Abstract. "IUPAC-name", $C_{52}H_{66}N_4P_2V_2$, $M_r = 910.95$, triclinic, *P*-1, *a* = 12.182(2), *b* = 14.323(3), *c* = 14.344(3) Å, $\alpha = 79.989(3)^\circ$, $\beta = 83.952(3)^\circ$, $\gamma = 88.051(3)^\circ$, *V* = 2450.6(8) Å³, *Z* = 2, $D_x = 1.234$ gcm⁻³, *F*(000) = 964, $\mu = 4.85$ cm⁻¹, λ (MoK α) = 0.71073 Å, T = 100(1) K, 16314 reflections measured, *GooF* = 0.903, *wR*(*F*²) = 0.1761 for 7680 unique reflections and 551 parameters, 360 restraints and *R*(*F*) = 0.0776 for 3226 reflections obeying $F_o \ge 4.0 \sigma$ (F_o) criterion of observability.

The asymmetric unit consists of one molecule of the title compound, which is a di-nuclear Vcomplex coupled by N2.

Experimental

X-ray diffraction: Crystal and Molecular Structure.

Crystals were obtained by recrystallisation from pentane.

Although an X-ray structure determination was thwarted by persistent weak scattering power of the crystals, ultimately there was found a crystal ('more or less') fit to the X-ray experiment.

A red colored needle-shaped crystal with the dimensions of 0.30 x 0.065 x 0.035 mm was mounted on top of a glass fiber, by using inert-atmosphere handling techniques, and aligned on a Bruker¹ SMART APEX CCD diffractometer (Platform with full three-circle goniometer). The diffractometer was equipped with a 4K CCD detector set 60.0 mm from the crystal. The crystal was cooled to 100(1) K using the Bruker KRYOFLEX low-temperature device. Intensity measurements were performed using graphite monochromated Mo-K α radiation from a sealed ceramic diffraction tube (SIEMENS). Generator settings were 50 KV/ 40 mA. SMART was used for preliminary determination of the unit cell constants and data collection control. The intensities of reflections of a hemisphere were collected by a combination of 3 sets of exposures (frames). Each set had a different ϕ angle for the crystal and each exposure covered a range of 0.3° in ω . A total of 1800 frames were collected with an exposure time of 30.0 seconds per frame. The overall data collection time was 18.3 h. Data integration and global cell refinement was performed with the program SAINT. The final unit cell was obtained from the xyz centroids of 2436 reflections after integration. Intensity data were corrected for Lorentz and polarization effects, scale variation, for decay and absorption: a multi-scan absorption correction was applied, based on the intensities of symmetry-related reflections measured at different angular settings $(SADABS)^2$, and reduced to F_o^2 . The program suite SHELXTL was used for space group determination (XPREP).¹

The unit cell³ was identified as triclinic; space group *P*-1. Reduced cell calculations did not indicate any higher metric lattice symmetry⁴ and examination of the final atomic coordinates of the structure did not yield obvious extra crystallographic or metric symmetry elements.^{5,6}

The structure was solved by Patterson methods and extension of the model was accomplished by direct methods applied to difference structure factors using the program *DIRDIF*.⁷ The positional and anisotropic displacement parameters for the non-hydrogen atoms were refined.

Some atoms showed unrealistic displacement parameters when allowed to vary anisotropically, suggesting dynamic disorder (dynamic means that the smeared electron density is due to fluctuations of the atomic positions within each unit cell). This is in line with the weak scattering power of the crystals investigated. To improve the parameters chemical more reasonable, ultimately restrain instructions (*DELU, SIMU*)¹⁰ were applied in the refinement.

Hydrogen atoms were constrained to idealized geometries and allowed to ride on their carrier atoms with an isotropic displacement parameter related to the equivalent displacement parameter of their carrier atoms.

Final refinement on F^2 carried out by full-matrix least-squares techniques converged at $wR(F^2)$ = 0.1761 for 7680 reflections and R(F) = 0.0776 for 3226 reflections with $F_0 \ge 4.0 \sigma(F_0)$ and 551 parameters and 360 restraints. The final difference Fourier map was essentially featureless: no significant peaks (0.5(1) e/Å³) having chemical meaning above the general background were observed.

The positional and anisotropic displacement parameters for the non-hydrogen atoms and isotropic displacement parameters for hydrogen atoms were refined on F^2 with full-matrix least-squares procedures minimizing the function $Q = \sum_{h} [w(|(F_o^2) - k(F_c^2)|)^2]$, where $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$, $P = [\max(F_o^2, 0) + 2F_c^2] / 3$, F_o and F_c are the observed and calculated structure factor amplitudes, respectively; ultimately the suggested *a* (=0.0593) and *b* (= 0.0) were used in the final refinement.

Crystal data and numerical details on data collection and refinement are given in Table 1. Final fractional atomic coordinates, equivalent displacement parameters and anisotropic displacement parameters for the non-hydrogen atoms are given in Table 2. Molecular geometry data are collected in Table 3. Tables of atom positions, displacement parameters, comprehensive distances and angles and tables of (F_o^2) , (F_c^2) and $\sigma(F_o^2)$ are given as supplementary material^{* 3} for this paper. Neutral atom scattering factors and anomalous dispersion corrections were taken from *International Tables for Crystallography.*⁹

All refinement calculations and graphics were performed on a Pentium-III / Debian-Linux computer at the University of Groningen with the program packages SHELXL¹⁰ (least-square

^{*&}lt;sup>3</sup> Supplementary crystallographic data for this paper are available from the IUCr electronic archives (Reference: CCDCxxxxxx). These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax +44 1223 336033; e-mail: <u>deposit@ccdc.cam.ac.uk</u>).

refinements), a locally modified version of the program $PLUTO^{11}$ (preparation of illustrations) and $PLATON^{12}$ package (checking the final results for missed symmetry with the *MISSYM* option, solvent accessible voids with the *SOLV* option, calculation of geometric data and the *ORTEP*¹² illustrations).

Results and discussion.

The labeling scheme and the molecular geometry of the title compound are illustrated in the $PLUTO^{11}$ drawing of Fig. 1. The arrangement of molecules in the unit cell is shown in Fig. 2. Each asymmetric unit contains one formula unit, consisting of a di-nuclear V-complex, which are connected by a N₂. The triclinic unit cell contains two moieties of the title compound separated by normal van der Waals distances¹³ (Fig. 2).

No classic hydrogen bonds, no missed symmetry (*MISSYM*), but potential solvent-accessible area (voids of 48.0 Å³/ unit cell) were detected by procedures implemented in *PLATON*.^{14,15}

Legends to the Figures.

- Fig. 1. Perspective *PLUTO*¹¹ drawing showing the configuration of the title compound with the adopted labeling scheme for the non-hydrogen atoms.
- Fig. 2. Projections of the crystal structure down the unit cell axes and a view of an unit cell with minimal overlap.
- Fig. 3. Perspective *ORTEP*¹² drawing of the title compound with the atom-labeling scheme of the non-hydrogen atoms. All atoms are represented by their displacement ellipsoids drawn at the 50% probability level; hydrogen atoms have been omitted to improve clarity.

References.

- 1. Bruker (2000). SMART, SAINT, SADABS, XPREP and SHELXTL/NT. Area Detector Control and Integration Software. Smart Apex Software Reference Manuals. Bruker Analytical X-ray Instruments. Inc., Madison, Wisconsin, USA.
- Sheldrick, G.M. (2001). SADABS. Version 2. Multi-Scan Absorption Correction Program. University of Göttingen, Germany.
- 3. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- 4. Spek, A.L. (1988). J. Appl. Cryst. 21, 578-579.
- 5. Le Page, Y. (1987). J. Appl. Cryst. **20**, 264-269.
- 6. Le Page, Y. (1988). J. Appl. Cryst. **21**, 983-984.
- Beurskens, P.T., Beurskens, G., Gelder, R. de, García-Granda, S., Gould, R.O., Israël, R. & Smits, J.M.M. (1999). The *DIRDIF*-99 program system, Crystallography Laboratory, University of Nijmegen, The Netherlands.
- 8. Hall, S.R, Allen, F.H. & Brown, I.D. (1991). Acta Cryst. A47, 655-685.
- 9. International Tables for Crystallography (1992). Vol. C. Edited by A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht. The Netherlands.
- 10. Sheldrick, G.M. (1997). SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- 11. Meetsma, A. (2003). *PLUTO. Molecular Graphics Program*. Version of May 2003. University of Groningen, The Netherlands.
- Spek, A.L. (2003). PLATON. Program for the Automated Analysis of Molecular Geometry (A Multipurpose Crystallographic Tool). Version of June 2003. University of Utrecht, The Netherlands.
- 13. Bondi, A. (1964). J. Phys. Chem. **68**, 441-451.
- 14. Spek, A.L. (1990). Acta Cryst. A46, C-34.
- 15. Spek, A.L. (1994). Am. Crystallogr. Assoc. Abstr. 22, 66.
- 16. *International Tables for Crystallography* (1983). Vol. A. Space-group symmetry, edited by T. Hahn. Dordrecht: Reidel. (Present distributor Kluwer Academic Publishers, Dordrecht).
- 17. Fisher, R.X. & Tillmanns, E. (1988). Acta Cryst. C44, 775-776.

Table 1.

a. Crystal data and details of the structure determination.

Moiety_Formula	$C_{52}H_{66}N_4P_2V_2$
Formula_Weight, g.mol ⁻¹	910.95
Crystal system	triclinic
Space group, no. ¹⁶	<i>P</i> -1, 2
<i>a</i> , Å	12.182(2)
b, Å	14.323(3)
<i>c</i> , Å	14.344(3)
α, deg	79.989(3)
β, deg	83.952(3)
γ, deg	88.051(3)
V, Å ³	2450.6(8)
Θ range unit cell: minmax., deg; reflections	2.39 - 23.24 ; 2436
Formula_Z	2
SpaceGroup_Z	2
Z (= Formula_Z / SpaceGroup_Z)	1
$\rho_{calc}, g.cm^{-3}$	1.234
<i>F</i> (000), electrons	964
$\mu(Mo K\overline{\alpha}), cm^{-1}$	4.85
Color, habit	red, needle
Approx. crystal dimension, mm	0.30 x 0.065 x 0.035

b. Data collection.

λ (Mo K $\overline{\alpha}$), Å	0.71073
Monochromator	Graphite
Measurement device type	CCD area-detector diffractometer
Detector Area resolution (pixels / mm)	4096 x 4096 / 62 x 62 (binned 512)
Temperature, K	100(1)
Measurement method	$\phi\text{-}$ and $\omega\text{-}\text{scans}$
θ range; min. max., deg	2.20, 24.11
Index ranges	h: -13→13; k: -16→16; l: -16→16
Min Max. absorption transmission factor	0.8203 – 0.9832
X-ray exposure time, h	18.3
Total data	16314
Unique data	7680
Data with criterion: ($F_o \ge 4.0 \sigma$ (F_o))	3226
$R_{int} = \sum [F_o^2 - F_o^2(\text{mean})] / \sum [F_o^2]$	0.1608
$R_{sig} = \sum \sigma(F_o^2) / \sum [F_o^2]$	0.2944

c. Refinement.

Number of reflections	7680
Number of refined parameters	551
Number of restraints	360
Final agreement factors:	
$wR(F^2) = \left[\sum \left[w(F_o^2 - F_c^2)^2\right] / \sum \left[w(F_o^2)^2\right]\right]^{1/2}$	0.1761
Weighting scheme: a, b	0.0593, 0.0
$w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$	
And $P = [max(F_o^2, 0) + 2F_c^2] / 3$	
$R(F) = \sum (F_o - F_c) / \sum F_o $	0.0776
For $F_o > 4.0 \sigma$ (F_o)	
GooF = S = $\left[\sum [w(F_o^2 - F_c^2)^2] / (n-p)\right]^{1/2}$	0.903
n = number of reflections	
p = number of parameters refined	
Residual electron density in final	
Difference Fourier map, e/Å ³	-0.5, 0.5(1)
Max. (shift/σ) final cycle	<0.001
Average (shift/ σ) final cycle	0.000

Table 2. Final fractional atomic coordinates and equivalent isotropic displacementparameters with s.u.'s in parentheses.Atoms of the Asymmetric Unit.

Non-Hydrogen parameters

Atom	X	У	Ζ	$U_{eq} \left({ m \AA}^2 ight)^{*}$
V1	0.08697(11)	0.14280(8)	0.27552(9)	0.0148(5)
V2	0.35067(11)	-0.10726(8)	0.32715(9)	0.0131(5)
P1	-0.00697(18)	0.03373(14)	0.20503(15)	0.0203(8)
P2	0.46664(18)	-0.00728(14)	0.21105(15)	0.0190(8)
N1	-0.1972(ô) ´	0.4585(4)	0.2060(5)	0.035(3)
N2	0.1869(5)	0.0513(4)	0.2927(4)	0.016(2)
N3	0.2497(5)	-0.0161(4)	0.3055(4)	0.010(2)
N4	0.6416(6)	-0.4292(5)	0.4409(5)	0.035(3)
C1	0.0718(6)	0.2473(5)	0.3820(5)	0.016(2)
C2	0.0688(6)	0.1539(5)	0.4314(5)	0.020(2)
C3	-0.0241(7)	0.1094(5)	0.4134(5)	0.023(3)
C4	-0.0832(6)	0.1780(5)	0.3519(5)	0.020(2)
C5	-0.0243(6)	0.2626(5)	0.3338(5)	0.015(2)
C6	-0.0553(6)	0.3547(5)	0.2760(6)	0.027(2)
C7	-0.1691(7)	0.3607(5)	0.2503(6)	0.032(3)
C8	-0.3152(8)	0.4706(7)	0.1996(8)	0.063(4)
C9	-0.1373(9)	0.4891(6)	0.1131(6)	0.057(4)
C10	0.2526(7)	0.4023(5)	0.1162(5)	0.026(3)
C11	0.3260(7)	0.4734(S)	0.1145(6)	0.027(3)
C12	0.3985(7)	0.4696(5)	0.1810(5)	0.025(3)
C13	0.3987(7)	0.3926(5)	0.2543(6)	0.026(2)
C14	0.3255(6)	0.3209(5)	0.2584(5)	0.019(2)
C15	0.2527(6)	0.3224(5)	0.1876(5)	0.019(2)
C16	0.1743(6)	0.2471(5)	0.1933(5)	0.019(2)
C17	0.1142(6)	0.2141(5)	0.1378(5)	0.018(2)
C18	0.0985(6)	0.2332(5)	0.0356(5)	0.0170(19)
C19	0.1771(7)	0.2162(5)	-0.0331(5)	0.020(2)
C20	0.1625(7)	0.2381(5)	-0.1280(6)	0.027(2)
C21	0.0634(7)	0.2772(5)	-0.1575(6)	0.027(3)
C22	-0.0190(7)	0.2954(5)	-0.0875(5)	0.027(2)
C23	-0.0033(7)	0.2726(5)	0.0069(5)	0.024(2)
C24	-0.1255(6)	0.0690(5)	0.1394(5)	0.024(3)
C25	-0.0602(7)	-0.0678(5)	0.2891(5)	0.030(3)
C26	0.0817(6)	-0.0230(5)	0.1222(5)	0.026(3)
C27	0.3553(7)	-0.2096(5)	0.4668(5)	0.021(2)
C28	0.3228(7)	-0.1192(5)	0.4868(5)	0.025(2)
C29	0.4111(7)	-0.0595(5)	0.4542(5)	0.024(3)
C30	0.4983(7)	-0.1109(5)	0.4149(5)	0.020(2)
C31	0.4653(7)	-0.2051(5)	0.4235(5)	0.021(2)
C32	0.5321(7)	-0.2853(5)	0.3903(5)	0.026(3)
C33	0.5823(7)	-0.3511(5)	0.4700(5)	0.030(3)
C34	0.6725(8)	-0.4970(6)	0.5234(7)	0.062(4)
C35	0.7398(8)	-0.3990(7)	0.3784(7)	0.058(4)
C36	0.1134(6)	-0.2860(5)	0.3966(5)	0.015(2)

Electronic Supplementary Information for Dalton Transactions This journal is of The Royal Society of Chemistry 2010

C37	0.0398(7)	-0.3585(5)	0.4259(5)	0.023(2)
C38	0.0455(7)	-0.4357(5)	0.3805(5)	0.025(3)
C39	0.1249(6)	-0.4410(5)	0.3063(5)	0.020(3)
C40	0.1992(6)	-0.3704(5)	0.2776(5)	0.018(2)
C41	0.1952(6)	-0.2899(5)	0.3222(5)	0.0115(19)
C42	0.2778(6)	-0.2159(5)	0.2925(5)	0.015(2)
C43	0.3518(6)	-0.1901(5)	0.2229(5)	0.013(2)
C44	0.3899(6)	-0.2210(4)	0.1327(5)	0.0128(19)
C45	0.4933(7)	-0.2656(5)	0.1202(5)	0.019(2)
C46	0.5282(7)	-0.3001(5)	0.0375(5)	0.024(2)
C47	0.4596(7)	-0.2920(5)	-0.0350(5)	0.022(3)
C48	0.3570(7)	-0.2490(5)	-0.0230(5)	0.026(2)
C49	0.3232(6)	-0.2133(5)	0.0602(5)	0.018(2)
C50	0.5998(6)	-0.0477(5)	0.1618(5)	0.024(3)
C51	0.4012(6)	0.0415(5)	0.1064(5)	0.022(3)
C52	0.5037(7)	0.1001(5)	0.2511(5)	0.030(3)

Hydrogen parameters:

H1	0.12787(-)	0.29196(-)	0.38102(-)	0.01940(-)
H2	0.12250(-)	0.12531(-)	0.47137(-)	0.02409(-)
H3	-0.04460(-)	0.04559(-)	0.43721(-)	0.02752(-)
H4	-0.15063(-)	0.16799(-)	0.32764(-)	0.02442(-)
H6	-0.04462(-)	0.40607(-)	0.31206(-)	0.03241(-)
H6'	-0.00438(-)	0.36592(-)	0.21679(-)	0.03241(-)
H7	-0.22058(-)	0.34095(-)	0.30805(-)	0.03832(-)
H7'	-0.17758(-)	0.31687(-)	0.20528(-)	0.03832(-)
H8	-0.33157(-)	0.53654(-)	0.17219(-)	0.09417(-)
H8'	-0.35468(-)	0.45520(-)	0.26334(-)	0.09417(-)
H8"	-0.33891(-)	0.42833(-)	0.15896(-)	0.09417(-)
H9	-0.16523(-)	0.45597(-)	0.06635(-)	0.08497(-)
H9'	-0.05850(-)	0.47433(-)	0.11642(-)	0.08497(-)
H9"	-0.14773(-́)	0.55763(-)	0.09392(-)	0.08497(-)
H10	0.20218(-)	0.40736(-)	0.06929(-)	0.03070(-)
H11	0.32617(-)	0.52704(-)	0.06519(-)	0.03178(-)
H12	0.44884(-)	0.51961(-)	0.17716(-)	0.02946(-)
H13	0.44889(-)	0.38954(-)	0.30118(-)	0.03068(-)
H14	0.32367(-)	0.26909(-)	0.30988(-)	0.02332(-)
H19	0.24517(-)	0.18794(-)	-0.01519(-)	0.02349(-)
H20	0.22087(-)	0 22646(-)	-0 17408(-)	0.03257(-)
H21	0.05220(-)	0.29092(-)	-0 22304(-)	0.03240(-)
H22	-0.08677(-)	0.32409(-)	-0 10558(-)	0.03247(-)
H23	-0.06134(-)	0.28323(-)	0.05366(-)	0.02843(-)
H24	-0 10412(-)	0 11899(-)	0.08527(-)	0.03525(-)
H24'	-0 18458(-)	0.09285(-)	0.18135(-)	0.03525(-)
H24"	-0 15172(-)	0.00200()	0 11618(-)	0.03525(-)
H25	-0.09146(-)	-0 11242(-)	0 25485(-)	0.04460(-)
H25'	-0 11781(-)	-0.04672(-)	0.33427(-)	0.04460(-)
H25"	-0.00018(-)	-0.09917(-)	0.32378(-)	0.04460(-)
H26	0 14346(-)	-0.05477(-)	0 15420(-)	0.03897(-)
H26'	0 11028(-)	0.00177()	0.16120()	0.03897(-)
H26"	0.03965(-)	-0.06977(-)	0.09900(-)	0.03897(-)
H27	0.31073(-)	-0 26437(-)	0.00000()	0.00007()
H28	0.25355(-)	-0 10229(-)	0.51682(-)	0.02000()
H29	0.41217(-)	0.10220()	0.01002()	0.02020()
H30	0.56788(-)	-0.08629(-)	0.38712(-)	0.02000()
H32	0.59209(_)	-0.25880(-)	0.34192(_)	0.02010()
H32'	0.00200()	-0.32257(-)	0.35928(_)	0.00140()
H33	0.40420()	-0.31422(-)	0.00020()	0.03143()
H33'	0.00200()	-0 37512(-)	0.40000()	0.03617(-)
H34	0.71446(-)	-0.46442(-)	0.56253(-)	0.00017()
H3/I	0.71812(_)	-0.54816(_)	0.50233(-)	0.03321(-)
H3/"	0.71012(-) 0.60571(-)	-0.52366(_)	0.50140(-)	0.03321(-)
H35	0.00371(-) 0.71857()	-0.32300(-)	0.30137(-)	0.03521(-)
H35'	0.71037(-) 0.78102(-)	-0.33073(-)	0.32030(-)	0.00730(-)
H35"	0.70102(-)	-0.+3+72(-)	0.30173(-)	0.00730(-)
H36	0.10032(-)	-0.30301(-)	0.71070(-)	0.00730(-)
H37	-0.0027(-)	-0.23243(-)	0.427757()	0.01073(-)
н <i>ы</i> Ц20	-0.01303(-)	-0.33520(-)	0.47702(-)	0.02190(-)
H30	-0.00370(-)	-0.40000(-)	0.40040(-)	0.02942(-)
L109	0.12009(-)	-0.43430(-)	0.21418(-)	0.02401(-)
1740	0.20401(-)	-0.37342(-)	0.22011(-)	0.02112(-)

Electronic Supplementary Information for Dalton Transactions This journal is d the Royal Society of Chemistry 2010

H45	0.54050(-)	-0.27239(-)	0.16968(-)	0.02254(-)
H46	0.59904(-)	-0.32932(-)	0.03033(-)	0.02836(-)
H47	0.48279(-)	-0.31564(-)	-0.09199(-)	0.02677(-)
H48	0.30900(-)	-0.24369(-)	-0.07177(-)	0.03149(-)
H49	0.25281(-)	-0.18320(-)	0.06672(-)	0.02123(-)
H50	0.58981(-)	-0.10431(-)	0.13396(-)	0.03576(-)
H50'	0.64879(-)	-0.06319(-)	0.21247(-)	0.03576(-)
H50"	0.63245(-)	0.00249(-)	0.11245(-)	0.03576(-)
H51	0.44850(-)	0.08982(-)	0.06635(-)	0.03213(-)
H51'	0.32994(-)	0.07033(-)	0.12499(-)	0.03213(-)
H51"	0.38939(-)	-0.00913(-)	0.07063(-)	0.03213(-)
H52	0.55135(-)	0.13858(-)	0.20052(-)	0.04542(-)
H52'	0.54320(-)	0.08311(-)	0.30790(-)	0.04542(-)
H52"	0.43663(-)	0.13644(-)	0.26638(-)	0.04542(-)

*)
$$U_{eq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} a_{i} a_{j}^{17}$$

Anisotropic (displacement) parameters (Å²)

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
V1	0.0184(9)	0.0106(8)	0.0150(8)	-0.0025(6)	0.0002(7)	0.0013(7)
V2	0.0155(9)	0.0077(7)	0.0170(8)	-0.0034(6)	-0.0039(7)	0.0004(6)
P1	0.0244(14)	0.0150(12)	0.0213(13)	-0.0013(10)	-0.0033(11)	-0.0049(10)
P2	0.0212(14)	0.0146(12)	0.0204(13)	-0.0016(10)	-0.0003(11)	-0.0032(10)
N1	0.037(5)	0.022(5)	0.048(5)	-0.006(4)	-0.014(4)	0.013(4)
N2	0.026(4)	0.007(3)	0.015(4)	0.002(3)	-0.005(3)	-0.004(3)
N3	0.013(4)	0.007(3)	0.011(4)	-0.003(3)	0.003(3)	-0.005(3)
N4	0.044(5)	0.028(4)	0.027(4)	0.002(4)	0.003(4)	0.023(4)
C1	0.018(4)	0.021(4)	0.013(4)	-0.013(3)	0.002(3)	0.000(3)
C2	0.023(4)	0.021(4)	0.016(4)	-0.004(3)	0.002(3)	0.005(3)
C3	0.037(5)	0.010(4)	0.021(4)	-0.002(3)	0.002(4)	-0.003(3)
C4	0.020(4)	0.018(4)	0.023(4)	-0.007(3)	0.001(3)	0.005(3)
C5	0.020(4)	0.013(3)	0.013(4)	-0.007(3)	0.003(3)	0.003(3)
C6	0.025(4)	0.021(4)	0.034(4)	-0.006(3)	0.001(4)	-0.001(4)
C7	0.039(5)	0.020(4)	0.038(5)	0.002(4)	-0.021(4)	0.006(4)
C8	0.038(7)	0.050(7)	0.102(9)	-0.006(6)	-0.033(7)	0.013(6)
C9	0.096(9)	0.040(6)	0.037(7)	-0.004(5)	-0.028(7)	0.007(6)
C10	0.035(5)	0.020(4)	0.022(4)	-0.002(3)	-0.003(4)	-0.003(3)
C11	0.033(5)	0.017(4)	0.028(4)	-0.005(3)	0.007(4)	0.001(3)
C12	0.031(5)	0.013(4)	0.031(4)	-0.015(3)	0.009(4)	0.000(3)
C13	0.027(4)	0.022(4)	0.030(4)	-0.010(3)	-0.002(4)	-0.002(3)
C14	0.026(4)	0.017(4)	0.016(4)	-0.005(3)	-0.002(3)	0.000(3)
C15	0.024(4)	0.013(3)	0.021(4)	-0.006(3)	0.003(3)	0.003(3)
C16	0.022(4)	0.014(4)	0.020(4)	-0.007(3)	-0.001(3)	0.009(3)
C17	0.017(4)	0.012(4)	0.024(4)	-0.004(3)	-0.004(3)	0.007(3)
C18	0.021(4)	0.011(3)	0.019(3)	-0.001(3)	-0.006(3)	0.002(3)
C19	0.027(4)	0.009(4)	0.022(4)	0.000(3)	-0.003(3)	0.005(3)
C20	0.036(4)	0.021(4)	0.025(4)	-0.004(3)	-0.009(4)	-0.002(4)
C21	0.040(5)	0.022(4)	0.020(4)	0.001(3)	-0.018(3)	-0.002(4)
C22	0.033(4)	0.027(4)	0.024(4)	-0.002(4)	-0.017(3)	-0.007(4)
C23	0.026(4)	0.023(4)	0.021(4)	0.004(3)	-0.009(3)	0.003(3)
C24	0.017(5)	0.026(5)	0.030(5)	-0.011(4)	-0.003(4)	0.003(4)
C25	0.036(6)	0.028(5)	0.023(5)	0.000(4)	0.007(4)	-0.018(4)
C26	0.041(6)	0.025(5)	0.018(5)	-0.016(4)	-0.007(4)	-0.013(4)
C27	0.028(4)	0.021(4)	0.014(4)	0.001(3)	-0.008(3)	0.005(3)
C28	0.029(4)	0.030(4)	0.014(4)	-0.005(3)	0.003(3)	0.001(3)
029	0.029(5)	0.021(4)	0.021(4)	-0.004(3)	0.000(4)	0.001(3)
030	0.023(4)	0.022(4)	0.014(4)	-0.003(3)	-0.004(3)	0.002(3)
031	0.026(4)	0.018(3)	0.019(4)	-0.002(3)	-0.003(3)	0.004(3)
032	0.029(5)	0.022(4)	0.025(4)	0.006(3)	-0.009(4)	0.012(3)
033	0.040(5)	0.021(4)	0.028(5)	0.002(4)	-0.011(4)	0.006(4)
034	0.067(8)	0.049(7)	0.070(8)	-0.006(6)	-0.024(7)	0.043(6)
035	0.039(7)	0.050(7)	0.074(8)	-0.004(6)	0.001(6)	0.020(6)
C30	0.025(4)	0.011(4)	0.010(4)	-0.001(3)	-0.001(3)	-0.003(3)
C37	0.030(4)	0.022(4)	0.016(4)	-0.003(3)	0.006(3)	-0.005(3)
C30	0.032(5)	0.010(4)	0.023(4)	-0.004(3)	0.000(3)	-0.012(4)
C 4 0	0.034(3)	0.009(4)	0.010(4)	-0.003(3)	-0.002(3)	-0.000(3) 0.002(2)
C40	0.020(4)	0.019(4)	0.013(4)	-0.004(3)	-0.005(3)	-0.003(3)
C41	0.011(4)	0.009(3)	0.013(3)	0.000(3)	-0.000(3)	-0.001(3)
642	0.013(4)	0.014(4)	0.010(4)	0.002(3)	-0.000(3)	-0.003(3)

Electronic Supplementary Information for Dalton Transactions This journal is I The Royal Society of Chemistry 2010

C43	0.015(4)	0.010(4)	0.014(4)	0.000(3)	-0.009(3)	-0.003(3)
C44	0.021(4)	0.001(3)	0.015(3)	0.001(3)	0.002(3)	-0.003(3)
C45	0.028(4)	0.008(4)	0.021(4)	-0.004(3)	0.001(3)	-0.005(3)
C46	0.034(4)	0.011(4)	0.027(4)	-0.007(3)	0.004(3)	-0.004(3)
C47	0.039(5)	0.011(4)	0.015(4)	-0.004(3)	0.006(3)	-0.003(3)
C48	0.037(4)	0.022(4)	0.020(4)	-0.005(3)	0.000(4)	-0.006(4)
C49	0.026(4)	0.009(4)	0.018(4)	-0.004(3)	0.002(3)	-0.005(3)
C50	0.017(5)	0.029(5)	0.023(5)	-0.006(4)	0.015(4)	-0.004(4)
C51	0.022(5)	0.017(4)	0.024(5)	0.002(4)	-0.004(4)	-0.004(4)
C52	0.048(6)	0.013(5)	0.032(5)	-0.003(4)	-0.011(5)	-0.009(4)

Thermal vibration amplitudes (Å²)

$$F(\mathbf{h}) = F_o(\mathbf{h}) \exp(-2\pi^2 \sum_{i=1}^{3} \sum_{j=1}^{3} h_i h_i a_i^* a_j^* U_{ij})$$

or

 $F(\mathbf{h}) = F_o(\mathbf{h}) \exp \left(-8\pi^2 U_{iso}(\sin(\theta)/\lambda)^2\right)$

Table 3. Selected data on the geometry.

Standard deviations in the last decimal place are given in parentheses.

Interatomic Distances (Å)

V1	-P1	2.385(2)	C10	-C11	1.373(11)
V1	-N2	1.761(6)	C10	-C15	1.397(10)
V1	-C1	2.307(7)	C11	-C12	1.360(12)
V1	-C2	2.256(7)	C12	-C13	1.385(11)
V1	-C3	2.263(8)	C13	-C14	1.372(11)
V1	-C4	2.323(7)	C14	-C15	1.414(10)
V1	-C5	2.363(7)	C15	-C16	1.451(10)
V1	-C16	1.996(7)	C16	-C17	1.292(10)
V1	-C17	2.059(7)	C17	-C18	1.475(10)
V2	-P2	2.373(3)	C18	-C19	1.348(11)
V2	-N3	1.773(6)	C18	-C23	1.416(11)
V2	-C27	2.272(7)	C19	-C20	1.372(11)
V2	-C28	2.257(7)	C20	-C21	1.389(12)
V2	-C29	2.254(8)	C21	-C22	1.395(11)
V2	-C30	2.296(8)	C22	-C23	1.369(10)
V2	-C31	2.329(8)	C27	-C28	1.409(10)
V2	-C42	1.978(7)	C27	-C31	1.415(12)
V2	-C43	2.063(7)	C28	-C29	1.387(11)
P1	-C24	1.816(8)	C29	-C30	1.398(11)
P1	-C25	1.811(8)	C30	-C31	1.402(10)
P1	-C26	1.801(7)	C31	-C32	1.501(11)
P2	-C50	1.817(8)	C32	-C33	1.518(11)
P2	-C51	1.796(7)	C36	-C37	1.375(11)
P2	-C52	1.819(8)	C36	-C41	1.389(10)
N1	-C7	1.479(10)	C37	-C38	1.374(10)
N1	-C8	1.453(12)	C38	-C39	1.371(10)
N1	-C9	1.454(11)	C39	-C40	1.36(1)
N2	-N3	1.212(8)	C40	-C41	1.41(1)
N4	-C33	1.411(10)	C41	-C42	1.464(10)
N4	-C34	1.468(12)	C42	-C43	1.285(10)
N4	-C35	1.448(12)	C43	-C44	1.464(10)
C1	-C2	1.401(10)	C44	-C45	1.402(11)
C1	-C5	1.413(10)	C44	-C49	1.373(10)
C2	-C3	1.386(11)	C45	-C46	1.384(10)
C3	-C4	1.431(10)	C46	-C47	1.389(11)
C4	-C5	1.40(1)	C47	-C48	1.382(12)
C5	-C6	1.491(11)	C48	-C49	1.396(10)
C6	-C7	1.468(11)			

Electronic Supplementary Information for Dalton Transactions This journal is of the Royal Society of Chemistry 2010

Bond Angles (deg.)

P1	-V1	-N2	84.6(2)	N3	-V2	-C42	101.4(3)
P1	-V1	-C1	146.0(2)	N3	-V2	-C43	108.1(3)
P1	-V1	-C2	125.6(2)	C27	-V2	-C28	36.3(3)
P1	-V1	-C3	91.7(2)	C27	-V2	-C29	59.6(3)
P1	-V1	-C4	87.21(19)	C27	-V2	-C30	59.4(3)
P1	-V1	-C5	115.83(19)	C27	-V2	-C31	35.8(3)
P1	-V1	-C16	120.1(2)	C27	-V2	-C42	81.4(3)
P1	-V1	-C17	83.9(2)	C27	-V2	-C43	106.1(3)
N2	-V1	-C1	116.8(3)	C28	-V2	-C29	35.8(3)
N2	-V1	-C2	91.9(3)	C28	-V2	-C30	59.9(3)
N2	-V1	-C3	100.8(3)	C28	-V2	-C31	60.0(3)
N2	-V1	-C4	136.0(3)	C28	-V2	-C42	107.6(3)
N2	-V1	-C5	150.1(3)	C28	-V2	-C43	140.3(3)
N2	-V1	-C16	102.0(3)	C29	-V2	-C30	35.8(3)
N2	-V1	-C17	108.4(3)	C29	-V2	-C31	59.3(3)
C1	-V1	-C2	35.7(3)	C29	-V2	-C42	140.6(3)
C1	-V1	-C3	59.9(3)	C29	-V2	-C43	155.3(3)
C1	-V1	-C4	58.9(3)	C30	-V2	-C31	35.3(3)
C1	-V1	-C5	35.2(3)	C30	-V2	-C42	127.8(3)
C1	-V1	-C16	82.9(3)	C30	-V2	-C43	120.4(3)
C1	-V1	-C17	110.9(3)	C31	-V2	-C42	92.9(3)
C2	-V1	-C3	35.7(3)	C31	-V2	-C43	96.9(3)
C2	-V1	-C4	59.2(3)	C42	-V2	-C43	37.0(3)
C2	-V1	-C5	58.7(3)	V1	-P1	-C24	122.2(3)
C2	-V1	-C16	113.8(3)	V1	-P1	-C25	113.7(3)
C2	-V1	-C17	146.4(3)	V1	-P1	-C26	113.4(3)
C3	-V1	-C4	36.3(3)	C24	-P1	-C25	101.4(4)
C3	-V1	-C5	59.3(3)	C24	-P1	-C26	102.2(3)
C3	-V1	-C16	142.2(3)	C25	-P1	-C26	101.3(3)
C3	-V1	-C17	149.9(3)	V2	-P2	-C50	122.1(3)
C4	-V1	-C5	34.8(3)	V2	-P2	-C51	113.6(3)
C4	-V1	-C16	119.3(3)	V2	-P2	-C52	113.0(3)
C4	-V1	-C17	113.6(3)	C50	-P2	-C51	102.7(3)
C5	-V1	-C16	86.9(3)	C50	-P2	-C52	101.7(4)
C5	-V1	-C17	96.0(3)	C51	-P2	-C52	101.1(3)
C16	-V1	-C17	37.1(3)	C7	-N1	-C8	111.3(7)
P2	-V2	-N3	85.0(2)	C7	-N1	-C9	113.8(7)
P2	-V2	-C27	141.4(2)	C8	-N1	-C9	109.9(8)
P2	-V2	-C28	131.4(2)	V1	-N2	-N3	175.4(6)
P2	-V2	-C29	95.9(2)	V2	-N3	-N2	174.5(5)
P2	-V2	-C30	83.1(2)	C33	-N4	-C34	110.9(7)
P2	-V2	-C31	107.1(2)	C33	-N4	-C35	111.3(7)
P2	-V2	-C42	120.2(2)	C34	-N4	-C35	109.5(7)
P2	-V2	-C43	84.1(2)	V1	-C1	-C2	70.2(4)
N3	-V2	-C27	124.3(3)	V1	-C1	-C5	74.5(4)
N3	-V2	-C28	94.0(3)	C2	-C1	-C5	107.2(6)
N3	-V2	-C29	96.6(3)	V1	-C2	-C1	74.1(4)
N3	-V2	-C30	128.3(3)	V1	-C2	-C3	72.4(4)
N3	-V2	-C31	153.4(3)	C1	-C2	-C3	109.9(6)

Electronic Supplementary Information for Dalton Transactions This journal is O Phē Royal Society of Chemistry 2010

V1	-C3	-C2	71.9(4)	V2	-C28	-C27	72.5(4)
V1	-C3	-C4	74.1(4)	V2	-C28	-C29	72.0(4)
C2	-C3	-C4	106.8(6)	C27	-C28	-C29	107.0(7)
V1	-C4	-C3	69.6(4)	V2	-C29	-C28	72.2(4)
V1	-C4	-C5	74.2(4)	V2	-C29	-C30	73.7(4)
C3	-C4	-C5	108.0(̈́6)́	C28	-C29	-C30	109.3(7)
V1	-C5	-C1	70.3(4)	V2	-C30	-C29	70.5(5)
V1	-C5	-C4	71.1(4)	V2	-C30	-C31	73.7(5)
V1	-C5	-C6	125.2(5)	C29	-C30	-C31	108.2(7)
C1	-C5	-C4	108.1(6)	V2	-C31	-C27	69.9(4)
C1	-C5	-C6	124.4(7)	V2	-C31	-C30	71.1(4)
C4	-C5	-C6	127.6(7)	V2	-C31	-C32	122.6(5)
C5	-C6	-C7	114.8(6)	C27	-C31	-C30	106.8(7)
N1	-C7	-C6	110.8(6)	C27	-C31	-C32	126.4(7)
C11	-C10	-C15	119.4(̈́7)́	C30	-C31	-C32	126.8(7)
C10	-C11	-C12	122.3(7)	C31	-C32	-C33	113.4(6)
C11	-C12	-C13	119.8(̈́7)́	N4	-C33	-C32	114.2(́6)́
C12	-C13	-C14	119.2(8)	C37	-C36	-C41	121.0(7)
C13	-C14	-C15	121.4(7)	C36	-C37	-C38	120.0(7)
C10	-C15	-C14	117.8(7)	C37	-C38	-C39	120.2(7)
C10	-C15	-C16	121.0(7)	C38	-C39	-C40	120.4(7)
C14	-C15	-C16	121.0(6)	C39	-C40	-C41	120.9(7)
V1	-C16	-C15	147.4(5)	C36	-C41	-C40	117.5(7)
V1	-C16	-C17	74.1(5)	C36	-C41	-C42	122.2(7)
C15	-C16	-C17	138.4(7)	C40	-C41	-C42	120.3(6)
V1	-C17	-C16	68.8(4)	V2	-C42	-C41	146.2(5)
V1	-C17	-C18	154.6(́6)́	V2	-C42	-C43	75.1(5)
C16	-C17	-C18	136.6(7)	C41	-C42	-C43	138.6(7)
C17	-C18	-C19	123.3(7)	V2	-C43	-C42	67.9(4)
C17	-C18	-C23	119.1(6)	V2	-C43	-C44	155.8(5)
C19	-C18	-C23	117.6(T)	C42	-C43	-C44	136.3(7)
C18	-C19	-C20	122.4(8)	C43	-C44	-C45	120.7(6)
C19	-C20	-C21	120.8(8)	C43	-C44	-C49	121.4(7)
C20	-C21	-C22	117.6(8)	C45	-C44	-C49	117.7(6)
C21	-C22	-C23	120.8(8)	C44	-C45	-C46	121.6(7)
C18	-C23	-C22	120.7(7)	C45	-C46	-C47	120.0(8)
V2	-C27	-C28	71.3(4)	C46	-C47	-C48	118.9(̈́7)́
V2	-C27	-C31	74.3(4)	C47	-C48	-C49	120.6(̈́7)́
C28	-C27	-C31	108.6(7)	C44	-C49	-C48	121.2(7)

Torsion Angles (deg.)

N2	-V1	-P1	-C24	-169.4(3)
N2	-V1	-P1	-C25	68.6(4)
N2	-V1	-P1	-C26	-46.4(3)
C1	-V1	-P1	-C24	58.6(5)
C1	-V1	-P1	-C25	-63.5(5)
C1	-V1	-P1	-C26	-178.5(4)
C2	-V1	-P1	-C24	102.2(4)
C2	-V1	-P1	-C25	-19.9(4)
C2	-V1	-P1	-C26	-134.9(3)
C3	-V1	-P1	-C24	90.0(4)
C3	-V1	-P1	-C25	-32.1(4)

C3	-V1	-P1	-C26	-147.1(3)
C4	-V1	-P1	-C24	53.9(3)
C4	-V1	-P1	-C25	-68.1(3)
C4	-V1	-P1	-C26	176.9(3)
C5	-V1	-P1	-C24	33.5(4)
C5	-V1	-P1	-625	-88.5(4)
	-V1	-P1	-626	150.5(3)
C16	-V I \/1	-P I D1	-024	-00.0(4)
C16	-v i _\/1	-r i _P1	-025	543(4)
C17	-V1 -V/1	-P1	-020	-60 2(4)
C17	-V1	-P1	-C25	177 8(4)
C17	-V1	-P1	-C26	62.8(3)
P1	-V1	-C1	-C2	73.8(5)
P1	-V1	-C1	-C5	-41.4(6)
N2	-V1	-C1	-C2	-50.3(5)
N2	-V1	-C1	-C5	-165.5(4)
C2	-V1	-C1	-C5	-115.2(6)
C3	-V1	-C1	-C2	36.8(4)
C3	-V1	-C1	-C5	-78.4(5)
C4	-V1	-C1	-C2	79.2(5)
C4	-V1	-C1	-05	-36.0(4)
C5	-V1	-01	-62	115.2(6)
C16	-V I \/1		-02	-150.2(5)
C10	-v i _\/1	-01	-03	$_{-175}^{94.0(4)}$
C17	-V1	-C1	-02	69 7(5)
P1	-V1	-C2	-C1	-138.7(4)
P1	-V1	-C2	-C3	-21.2(5)
N2	-V1	-C2	-C1	136.6(5)
N2	-V1	-C2	-C3	-105.9(5)
C1	-V1	-C2	-C3	117.5(6)
C3	-V1	-C2	-C1	-117.5(6)
C4	-V1	-C2	-C1	-78.5(5)
C4	-V1	-C2	-C3	39.0(4)
C5	-V1	-C2	-C1	-37.7(4)
C5	-V1	-02	-03	79.8(5) 22.6(5)
C16	-V I \/1	-02	-01	32.0(3)
C17	-v1 _\/1	-02	-03 -01	8 3(7)
C17	-V1	-C2	-C3	125 8(6)
P1	-V1	-C3	-C2	162.9(4)
P1	-V1	-C3	-C4	-82.9(4)
N2	-V1	-C3	-C2	78.1(5)
N2	-V1	-C3	-C4	-167.8(4)
C1	-V1	-C3	-C2	-36.8(4)
C1	-V1	-C3	-C4	77.4(4)
C2	-V1	-C3	-C4	114.2(6)
C4	-V1	-C3	-C2	-114.2(6)
C5	-V1	-C3	-C2	-77.8(5)
	-V1	-03	-64	36.3(4)
	-V I \/1	-U3 C2	-62	-40.1(7)
	- v I	-03	-04	00.1(0)

C17	-V1	-C3	-C2	-116.4(6)
C1/	-V1	-03	-C4	-2.3(8)
P1	-V1	-04 -C4	-C5	-146 6(4)
N2	-V1	-C4	-C3	17.4(6)
N2	-V1	-C4	-C5	134.1(5)
C1	-V1	-C4	-C3	-80.3(5)
C1	-V1	-C4	-C5	36.4(4)
C2	-V1	-C4	-C3	-38.4(4)
C2	-V1	-04	-C5	78.3(4) 116 7(6)
C5	-V1	-C4	-03 -03	-116 7(6)
C16	-V1	-C4	-C3	-140.1(4)
C16	-V1	-C4	-C5	-23.4(5)
C17	-V1	-C4	-C3	178.8(4)
C17	-V1	-C4	-C5	-64.6(5)
P1	-V1	-C5	-C1	155.8(4)
	-V1	-05	-04	37.6(4) 85.5(6)
Г I N2	-v i _\/1	-05	-C0 -C1	-65.5(0) 26.7(7)
N2	-V1	-C5	-C4	-91.5(6)
N2	-V1	-C5	-C6	145.4(6)
C1	-V1	-C5	-C4	-118.1(6)
C1	-V1	-C5	-C6	118.7(8)
C2	-V1	-C5	-C1	38.2(4)
C2	-V1 -\/1	-05 -05	-C4 -C6	-79.9(5) 156 9(7)
C3	-V1	-05 -C5	-C1	80.2(5)
C3	-V1	-C5	-C4	-38.0(4)
C3	-V1	-C5	-C6	-161.1(7)
C4	-V1	-C5	-C1	118.1(6)
C4	-V1	-C5	-C6	-123.1(8)
C16	-V1	-05 -05	-C1	-82.1(4) 150 7(5)
C16	-v1 -V1	-05 -C5	-C4 -C6	36 6(6)
C17	-V1	-C5	-C1	-118.2(4)
C17	-V1	-C5	-C4	123.7(4)
C17	-V1	-C5	-C6	0.5(6)
P1	-V1	-C16	-C15	-169.7(9)
P1	-V1	-C16	-C17	14.1(5)
NZ N2	-V I _\/1	-016	-C15 -C17	-79.(1) 104 7(5)
C1	-V1	-C10 -C16	-C17	37 (1)
C1	-V1	-C16	-C17	-139.3(5)
C2	-V1	-C16	-C15	18.5(11)
C2	-V1	-C16	-C17	-157.8(4)
C3	-V1	-C16	-C15	46.9(13)
C3	-V1	-016	-C17 C15	-129.4(5)
C4	-V1	-C16	-C17	-91 1(5)
C5	-V1	-C16	-C15	72.1(10)
C5	-V1	-C16	-C17	-104.2(5)
C17	-V1	-C16	-C15	176.3(13)

P1	-V1	-C17	-C16	-167.8(5)
P1	-V1	-C17	-C18	9.9(12)
N2	-V1	-C17	-C16	-85.6(5)
N2	-V1	-C17	-C18	92.1(13)
C1	-V1	-017	-016	43.9(5)
	-V I	-017	-018	-138.4(12)
C2	-V I \/1	-017	-010	30.7(7) 1/3 6(11)
C3	-V1	-C17	-010	109 4(6)
C3	-V1	-C17	-C18	-72 9(14)
C4	-V1	-C17	-C16	108.0(5)
C4	-V1	-C17	-C18	-74.3(13)
C5	-V1	-C17	-C16	76.8(5)
C5	-V1	-C17	-C18	-105.5(13)
C16	-V1	-C17	-C18	177.7(15)
N3	-V2	-P2	-C50	-169.7(3)
N3	-V2	-P2	-C51	-45.8(3)
N3	-V2	-P2	-C52	68.6(4)
C27	-V2	-P2	-C50	47.6(4)
C27	-VZ	-PZ	-651	771.4(4)
C28	-VZ	-P2 D2	-C52	-74.2(4)
C28	-vz	-r 2 -P2	-050	-136 8(4)
C28	-V2 -V2	-P2	-C52	-72 4(4)
C29	-V2	-P2	-C50	942(4)
C29	-V2	-P2	-C51	-142.0(3)
C29	-V2	-P2	-C52	-27.5(4)
C30	-V2	-P2	-C50	60.7(3)
C30	-V2	-P2	-C51	-175.4(3)
C30	-V2	-P2	-C52	-61.0(3)
C31	-V2	-P2	-C50	34.6(4)
C31	-V2	-P2	-C51	158.4(3)
C31	-V2	-P2	-C52	-87.1(4)
C42	-V2	-P2	-050	-69.3(4)
C42	-VZ	-PZ	-051	54.5(4) 160.0(4)
C42	-VZ	-P2 D2	-C52 C50	109.0(4) 60.0(4)
C43	-v2 _\/2	-FZ	-050	-00.9(4) 62.9(3)
C43	-V2	-P2	-C52	177 4(4)
P2	-V2	-C27	-C28	94.9(5)
P2	-V2	-C27	-C31	-21.6(6)
N3	-V2	-C27	-C28	-38.2(6)
N3	-V2	-C27	-C31	-154.7(4)
C28	-V2	-C27	-C31	-116.5(7)
C29	-V2	-C27	-C28	37.9(5)
C29	-V2	-C27	-C31	-78.6(5)
C30	-V2	-C27	-C28	79.7(5)
C30	-V2	-027	-C31	-36.8(4)
C42	-VZ	-627	-628 629	110.5(7)
C42	-vZ	-027	-020 _021	-130.3(3) 107 2(5)
C43	-vZ _\/2	-027	-031	-164 1(5)
C43	-V2	-C.27	-C31	79 4(5)
2.0		521		

P2 P2 N3 C27 C29 C30 C30 C31 C31 C42 C42 C42 C43	-V2 -V2 -V2 -V2 -V2 -V2 -V2 -V2 -V2 -V2	-C28 -C28 -C28 -C28 -C28 -C28 -C28 -C28	-C27 -C29 -C27 -C29 -C27 -C27 -C27 -C29 -C27 -C29 -C27 -C29 -C27	-124.0(4) -8.8(6) 149.2(5) -95.7(5) 115.2(7) -115.2(7) -78.2(5) 37.0(4) -37.2(5) 78.0(5) 45.8(6) 161.0(5) 24.3(7)
C43 P2 N3 N3 C27 C28 C30 C31 C42 C43 C42 C43 C42 C43 C43 C27 C28 C29 C31 C42 C43 C27 C28 C29 C31 C42 C43 C43 P2 P2 N3 N3 C27 C27 C28 C28 C29 C31 C42 C43 C27 C28 C29 C31 C42 C43 C27 C28 C27 C28 C30 C42 C43 C27 C27 C28 C43 C42 C43 C43 C27 C27 C28 C43 C43 C27 C27 C28 C43 C43 C27 C28 C43 C43 C27 C27 C28 C43 C43 C27 C28 C43 C43 C27 C28 C43 C43 C27 C28 C43 C43 C27 C28 C27 C28 C43 C43 C27 C28 C43 C27 C28 C27 C28 C43 C43 C27 C28 C27 C28 C43 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C27 C28 C28 C29 C31 C42 C43 C27 C28 C29 C31 C42 C43 C27 C28 C28 C29 C31 C42 C43 C27 C28 C28 C29 C31 C42 C43 C27 C28 C28 C28 C28 C29 C31 C27 C28 C28 C28 C28 C28 C28 C28 C28 C28 C28	-V2 -V2 -V2 -V2 -V2 -V2 -V2 -V2 -V2 -V2	$\begin{array}{c} -C28\\ -C29\\ -C30\\ -C31\\ -C31\\$	$\begin{array}{c} -C29\\ -C28\\ -C30\\ -C29\\ -C31\\ -C29\\ -C30\\ -C32\\ -C27\\ -C30\\ -C32\\ -C32\\ -C30\\ -C32\\ -C27\\ -C30\\ -C32\\ -C30\\ -C32\\ -C27\\ -C30\\ -C32\\ -C27\\ -C30\\ -C32\\ -C27\\ -C30\\ -C32\\ -C27\\ -C30\\ -C28\\ -C28\\$	$\begin{array}{c} 139.5(5)\\ 173.4(4)\\ -69.5(4)\\ 87.8(5)\\ -155.1(4)\\ -38.4(5)\\ 78.7(5)\\ 117.1(6)\\ -117.1(6)\\ -80.2(5)\\ 36.9(4)\\ -29.3(7)\\ 87.8(6)\\ -97.8(8)\\ 19.3(9)\\ 110.2(4)\\ -33.1(4)\\ 32.2(6)\\ 148.8(4)\\ -79.3(5)\\ 37.4(4)\\ -37.1(4)\\ 79.6(5)\\ 116.7(6)\\ -116.7(6)\\ -116.7(6)\\ -126.6(5)\\ -9.9(6)\\ -170.8(4)\\ -54.1(5)\\ 166.1(4)\\ 49.3(4)\\ -54.1(5)\\ 166.1(4)\\ 49.3(4)\\ -52.8(6)\\ 51.9(8)\\ -64.9(8)\\ 173.0(6)\\ -116.8(6)\\ 121.0(8)\\ 37.7(4)\\ -79.2(5)\\ \end{array}$

C28	-V2	-C31	-C32	158.7(7)
C29	-V2	-C31	-C27	79.4(5)
C29	-VZ	-031 -031	-030	-37.4(4) -159.5(7)
C30	-V2	-C31	-032 -C27	116 8(6)
C30	-V2	-C31	-C32	-122.1(8)
C42	-V2	-C31	-C27	-71.0(5)
C42	-V2	-C31	-C30	172.2(5)
C42	-V2	-C31	-C32	50.1(6)
C43	-V2	-C31	-C27	-107.9(4)
C43	-V2	-C31	-C30	135.3(5)
C43	-V2	-C31	-C32	13.1(7)
P2 D2	-VZ	-042	-041	-169.5(9)
rz N3	-v2 -\/2	-042	-C43 -C41	-78 6(10)
N3	-V2	-C42	-C43	104 9(5)
C27	-V2	-C42	-C41	44.8(10)
C27	-V2	-C42	-C43	-131.7(5)
C28	-V2	-C42	-C41	19.4(11)
C28	-V2	-C42	-C43	-157.1(5)
C29	-V2	-C42	-C41	36.9(12)
C29	-V2	-C42	-C43	-139.6(5)
C30	-V2	-042	-C41	84.5(10)
C30	-VZ	-042 -042	-C43 -C41	-92.0(5) 78.8(10)
C31	-v2 -\/2	-042	-041	-97 7(5)
C43	-V2	-C42	-C41	176.5(13)
P2	-V2	-C43	-C42	-167.9(5)
P2	-V2	-C43	-C44	12.4(13)
N3	-V2	-C43	-C42	-85.1(5)
N3	-V2	-C43	-C44	95.2(13)
C27	-V2	-C43	-C42	50.2(5)
C27	-V2	-643	-644	-129.6(13)
C28	-VZ	-043 -043	-C42 -C44	33.3(7) -144.2(12)
C20	-V2 -V2	-C43	-C42	100 8(8)
C29	-V2	-C43	-C44	-79.0(15)
C30	-V2	-C43	-C42	113.7(5)
C30	-V2	-C43	-C44	-66.1(14)
C31	-V2	-C43	-C42	85.6(5)
C31	-V2	-C43	-C44	-94.2(13)
C42	-V2	-C43	-C44	-179.8(16)
	-IN 1	-07	-06	-167.3(7)
C34	-IN I _N/∕	-07	-00	07.9(9) -171.1(7)
C35	-N4	-033	-032	66 7(9)
V1	-C1	-C2	-C3	-64 1(5)
C5	-C1	-C2	-V1	65.9(5)
C5	-C1	-C2	-C3	1.8(8)
V1	-C1	-C5	-C4	61.3(5)
V1	-C1	-C5	-C6	-119.7(7)
C2	-C1	-C5	-V1	-63.0(5)
C2	-C1	-C5	-C4	-1.7(8)

C2	-C1	-C5	-C6	177.3(7)
V1	-C2	-C3	-C4	-66.4(5)
C1	-C2	-C3	-V1	65.2(5)
C1	-C2	-C3	-C4	-1.3(8)
V1	-C3	-C4	-C5	-64.7(5)
C2	-C3	-C4	-V1	64.9(5)
C2	-C3	-C4	-C5	0.2(8)
V1	-C4	-C5	-C1	-60.8(5)
V1	-C4	-C5	-C6	120.3(8)
C3	-C4	-C5	-V1	61.7(5)
C3	-C4	-C5	-C1	0.9(8)
C3	-C4	-C5	-C6	-178.0(7)
C1	-C5	-C0 -C6	-C7	-166.9(7)
C4	-C5	-C6	-C7	11.8(11)
C5	-C6	-C7	-N1	171.5(6)
C15	-C10	-C11	-C12	-0.9(12)
C11	-C10	-C15	-C14	3.2(11)
C11	-C10	-C15	-C16	178.2(7)
C10	-C11	-C12	-C13	-0.9(12)
C11	-C12	-C13	-C14	0.2(12)
C12 C13	-C13 -C14	-C14 -C15	-C10	-4.0(11)
C13	-C14	-C15	-016	-179.0(7)
C10	-C15	-C16	-V1	-151.7(8)
C10	-C15	-C16	-C17	22.9(14)
C14	-C15	-C16	-V1	23.2(14)
C14	-C15	-C16	-C17	-162.2(9)
V1	-C16	-C17	-C18	-178.6(10)
C15	-C16	-C17	-V1	-177.0(11)
C15	-C16	-C17	-C18	4.4(17)
V1 V1	-C17	-C18	-C19	-110.2(13)
C16	-C17	-C18	-C19	66.7(13)
C10	-C17	-C18	-C23	-177.2(7)
C17	-C18	-C19	-C20	
C23	-C18	-C19	-C20	1.9(11)
C17	-C18	-C23	-C22	176.9(7)
C19	-C18	-C23	-C22	-2.2(11)
C18	-C19	-C20	-C21	-1.6(12)
C19	-C20	-C21	-C22	1.6(11)
C20	-C21	-C22	-C23	-2.0(11)
C21	-C22	-C23	-C18	2.3(11)
V2	-C27	-C28	-C29	-64.2(5)
C31	-C27	-C28	-V2	65.4(5)
C31	-C27	-C28	-C29	1.3(8)
V2 V2	-C27	-C31	-C30	61.9(5)
C28	-C27	-C31	-V2	-63.5(5)
C28	-027 -C27	-C31 -C31	-C30 -C32	-179.8(7)
V2	-C28	-C29	-C30	-64.9(5)
C27	-C28	-C29	-V2	64.5(5)

C27	-028	-029	-030	-0 4(9)
V2	-C20	-C30	_C31	-64 5(5)
C28	-C20	-C30	_\/2	63 9(5)
C28	-C29	-030	-031	-0.6(9)
V2	-023	-030 -031	-031	-61 1(5)
V2 V2	-030	-031	-027	-01.1(3) 117 0(7)
C20	-030	-031	-0.02	62 5(5)
C20	-030 C30	-001 C31	-v2 C27	1/(8)
C29	-030	-031 C31	-027	170 5(7)
029 V2	-030	-031	-032	169.5(7)
VZ C27	-031	-032	-000	-100.5(5)
C20	-031	-032	-000	-60.5(10)
C30	-031	-032	-033 N/4	101.7(9)
C41	-032	-033	-1N4 C20	177.3(7)
C41	-030	-037	-030	-1.0(12)
C37	-030	-041	-040	(11) U.D 177 1(7)
C37	-030	-041	-042	-1/(.1(/))
C30	-037	-030	-039	0.4(12)
C37	-038	-039	-040	0.0(12)
038	-039	-040	-641	-1.0(11)
039	-040	-641	-030	(11)
C39	-640	-641	-642	1/8.1(7)
C36	-641	-042	-VZ	17.1(14)
036	-C41	-042	-043	-168.0(9)
C40	-C41	-042	-V2	-160.4(8)
C40	-C41	-042	-043	14.5(14)
V2	-C42	-043	-C44	179.9(9)
C41	-042	-043	-V2	-1/7.1(11)
C41	-042	-043	-C44	2.8(17)
V2	-043	-044	-045	70.0(15)
V2	-C43	-C44	-C49	-114.5(13)
C42	-C43	-C44	-C45	-109.7(10)
C42	-C43	-C44	-C49	65.9(12)
C43	-C44	-C45	-C46	1/6.3(7)
C49	-C44	-C45	-C46	0.6(10)
C43	-C44	-C49	-C48	-175.4(7)
C45	-C44	-C49	-C48	0.3(10)
C44	-C45	-C46	-C47	-0.8(11)
C45	-C46	-C47	-C48	0.2(11)
C46	-C47	-C48	-C49	0.7(11)

The sign of the torsion angle is positive if when looking from atom-2 to atom-3 a clockwise motion of atom-1 would superimpose it on atom-4.

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2010

File :	cp881.doc
Number_of_Characters :	161972
Number_of_Words:	29166
Number_of_Lines :	2902
Number_of_Pages :	26
Date_and_Time :	13-07-2010 08:12:16
Author :	A. Meetsma
Address :	Crystal Structure Center, Chemical Physics,
Materials Science Center, University of	Groningen,
	Nijenborgh 4, NL-9747 AG Groningen,
	The Netherlands.
Room :	5118-0037 / -0036
Phone :	(+31) 50 363 4368 / - 4423
Fax :	(+31) 50 363 4441
E-mail :	A.Meetsma@fwn.rug.nl
Web :	http://www.chem.rug.nl/ssc

File_Names :

CP881.doc	Experimental Document (Microsoft® Word 2002 (1.0.2627.2625)
CP881.spf	<u>S</u> tandard <u>Crystallographic</u> <u>P</u> arameter <u>F</u> ile
CP881.res	Input file for next cycle to SHELXL (version : 97.2)
CP881.lxl	Output file from SHELXL (version : 97.2)
CP881.lst	Output file from PLATON (version : 140603)
<u>Plot files</u> :	
CP881.h1x	HPGL file(s) by <i>PLUTO</i> (version : 160503)
CP881.h2x	HPGL file(s) different cell projections by PLUTO
CP881.h3x	HPGL file(s) Ortep plot (by <i>PLATON</i> or <i>ORTEP</i> 32)
CP881.hx	extra / special HPGL file(s)
