Multifunctional up-converting nanocomposites with multimodal imaging and photosensitization at near-infrared excitation

4 Fangfang Wang, Xiaojun Yang, Lin Ma, Bingrong Huang, Na Na, Yingchun E, Dacheng He,
5 Jin Ouyang*

Supp	orting	information
A		B

C

	20 mm
4.	D e25 e20 e20 e20
	Normality of the state of the s
0.	0.00 1 20 25 30 35 40 45 50 Diameter (nm)

10	20nm
11	
12	Figure S1. TEM image of (A) UCNP nanocrystals, (B) UCNP@(DHMA/FITC)@SiO2-FA nanocomposites, (C) UCNP@DHMA@SiO2-FA
13	nanocomposites and (D) large-scale TEM image of UCNP@(DHMA/FITC)@SiO2-FA nanocomposites.
14	
15	
16	
17	
18	
19	

- 1 As is shown in Figure S2, it can be seen that the fluorescence intensity of ABDA mixed
- 2 with UCNP@(DHMA/FITC)@SiO₂-FA and UCNP@DHMA@SiO₂-FA is almost the same
- 3 after the same exposure time. So it is concluded that the efficacy of singlet oxygen generation
- 4 of UCNP@(DHMA/FITC)@SiO₂-FA and UCNP@DHMA@SiO₂-FA is nearly the same,
- 5 which ensures that UCNP@(DHMA/FITC)@SiO₂-FA and UCNP@DHMA@SiO₂-FA have
- 6 much the same effect on cell apoptosis.

Figure S2. Fluorescence spectra of ABDA mixed with (A) UCNP@(DHMA/FITC)@SiO2-FA; (B) UCNP@DHMA@SiO2-FA. Under the

- 9 condition of exposure to NIR laser for 0, 5, 15, and 30 min, excited at 380 nm.
- 10

11

Figure S3. Two Photo fluorescence spectrum of UCNP@(DHMA/FITC)@SiO2-FA in PBS (pH, 7.4), under the excitation of 980 nm..
 13

- 14 Figure S3 is the two-photo fluorescence spectrum of UCNP@(DHMA/FITC)@SiO₂-FA,
- under the excitation of 980 nm. There are three emission peaks (470 nm, 540 nm, 650 nm) in
- 16 the spectrum. 470 nm and 650 nm are supposed to be the emission bands of Tm^{3+} from
- 17 UCNPs; and 540 nm is the emission peak of FITC, corresponding to green light seen with the
- 18 naked eyes. The emission mechanism of FITC is that the UCNPs emit strong blue and red
- 19 light under the irradiation of 980nm; and then FITC can be excited by the blue light, emitting

- 1 green light. DHMA can be excited by the blue light and transfers energy to tissue oxygen,
- 2 yielding cytotoxic reactive oxygen species (ROS) such as singlet oxygen ($^{1}O_{2}$).