RS•C

13. Energy values of food

Topic

Energy in food.

Timing

45-60 min.

Description

Students burn various foods of known mass. They heat a known volume of water and calculate the amount of energy in the food.

Apparatus and equipment (per group)

- ▼ Stirring thermometer
- ▼ Boss, clamp and stand
- ▼ Test-tube/metal calorimeter
- ▼ Access to balance
- ▼ Bunsen burner
- ▼ Mounting needle
- **▼** Teaspoon.

Chemicals (per group)

▼ Different foods.

Teaching tips

Mini-marshmallows, crisps, pasta, bread, potatoes, bacon, broad beans (dried) and cheese can be used.

Students could weigh any unburnt food.

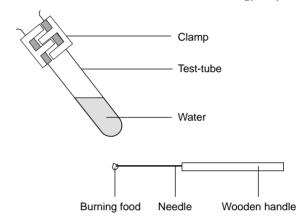
Data logging sensors and software can be used in this experiment to provide a large screen display of the temperature change. If the food stops burning too soon and the tube of water starts to cool, the graph will show a brief drop in temperature. This potential source of error makes a good discussion point – in fact the temperature drop can be accounted for in the calculation.

Safety

Wear eye protection

Do not permit tasting of foods.

Answers


- 1. Some heat is lost to the surroundings, not all the food may have burnt.
- 2. Exothermic.
- 3. 16380 J. Heat losses to surroundings will produce a lower figure from experiment.

RS•C

Energy values of food

Introduction

In this experiment various foods are tested to find how much energy they contain.

What to record

Measurement	Food
Mass/g	
Temperature of water before heating/°C	
Temperature of water after heating/°C	
Change in temperature/°C	
Heat absorbed by water/J (Temperature change x 4.2)	
Heat absorbed by water per gram of food/J	

What to do

- 1. Put 10 cm³ of water in a test-tube. Clamp the test-tube in the retort stand at an angle as shown in the diagram.
- 2. Weigh a small piece of food and record the mass in your table.
- 3. Take the temperature of the water in the test-tube and record it in the table.
- 4. Fix the food on the end of the mounted needle. If the food is likely to melt when heated put it on a teaspoon instead of on the needle.
- 5. Light the food using a bunsen burner. As soon as the food is alight, hold it about 1 cm below the test-tube. If the flame goes out, quickly relight it.
- 6. When the food stops burning, stir the water in the test-tube with the thermometer and note the temperature. Record it in your table.
- 7. Empty the test-tube and refill it with another 10 cm³ of water. Repeat the experiment using a different food each time.

Safety

Wear eye protection.

RS•C

Questions

- 1. Suggest reasons why this experiment may not be a fair test?
- 2. Burning gives out heat. What is the name given to this sort of reaction?
- 3. The label on a packet of cheese says 100 g provides 1638 kJ. Calculate how many joules this is per gram of cheese and compare it to the cheese in your experiment. (1 kJ = 1000 J)