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Criteria for an ideal scoring method

Adds value to raw results.

Easily understandable, no arbitrary scaling
transformation.

Is transferable between different
concentrations, analytes, matrices, and
measurement principles.




The z-score

“Assigned value”

Scheme provider’s best
estimate of true value

“Target value” or /

“standard deviation for
proficiency”




Determining an assigned value

Reference laboratory result
Certified reference material(s)
Formulation

Consensus of participants’ results




“Health warnings” about
the consensus

 The consensus Is not necessarily identical
with the true value. PT providers and
users have to be alert to this possibility.

 The consensus must have a sufficiently

small uncertainty.
>20 participants.

his usually requires




What exactly Is a ‘consensus’?

Mean? - easy to calculate, but affected by
outliers and asymmetry.

Robust mean? - fairly easy to calculate, handles
outliers but affected by strong asymmetry.

Median? - easy to calculate, more robust for
asymmetric distributions, but larger standard
error than robust mean.

Mode? - intuitively good, handles strong skews,
difficult to define, difficult to calculate.




Finding a ‘consensus’
—the tools of the trade

e Robust mean and standard deviation




Robust mean and standard deviation

Robust statistics is applicable to datasets that look like
normally distributed samples contaminated with outliers
and stragglers (i.e., unimodal and roughly symmetric).

The method downweights the otherwise large influence
of outliers and stragglers on the estimates.

It models the central ‘reliable’ part of the dataset.

The estimates are found by a procedure, not a formula.




Huber's H15
estimators




When can | safely use
robust estimates?

. Skewed

Bimodal
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The robust mean as consensus

 The robust mean provides a useful
consensus in the great majority of
Instances.

* The uncertainty of this consensus can
be safely taken as




Finding a ‘consensus’
—the tools of the trade

 Kernel density mode and its standard error




The mode as a consensus

Can | use the mode? How many modes? Where are they?




The normal kernel density for
identifying a mode

b |s the standard normal density,

Reference: AMC Technical Brief No. 4. (www.rsc.org/amc)




A normal kernel

Normal
kernel

Measurement axis




A kernel density

Measurement axis

Reference: AMC Technical Brief No. 4. (www.rsc.org/amc)




Another kernel density:
same data, different h

Measurement axis

Reference: AMC Technical Brief No. 4. (www.rsc.org/amc)




Uncertainty of the mode

 The uncertainty of the consensus can be
estimated as the standard error of the
mode by applying the bootstrap to the
procedure.

 The bootstrap Is a general procedure,
based on resampling, for estimating
standard errors of complex statistics.

 Reference: Bump-hunting for the proficiency tester — searching for
multimodality. P J Lowthian and M Thompson, Analyst, 2002,127,
1359-1364.




Finding a ‘consensus’
—the tools of the trade

e Mixture model representation




Mixture models and consensus

Mixture model (red line) and > e eaCh
normal components (blue lines) Component
yOou can
calculate:

- a mean
- a variance
- a proportion




2-component normal mixture model
and kernel density
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The normal mixture model

References: AMC Technical Brief No 23, and AMC Software.
Thompson, Acc Qual Assur, 2006, 10, 501-505.




Mixture models found by the maximum
likelihood method (the EM algorithm)

 The M-step

 The E-step




Example datasets




Example dataset 1

Nitrogen in canned meat

Laboratory ID




Nitrogen in canned meat
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Result, % by mass




Number of modes vs smoothing factor h

Kernel density modes
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Nitrogen in canned meat

BLACK = KERNEL DENSITY
RED = MIXTURE MODEL

| | | |
2.7 2.8 2.9 3.0

COMPONENT 1: MEAN = 2.0120; 5D = 0.0747; p = 1 Analy‘tical result




Bootstrapped kernel density plots
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Statistics: dataset 1

Robust

Kernel density mode

Mixture model




Skewed/multimodal distributions

e Skews and extra modes can arise when the
participants’ results come from two or more
Inconsistent methods.

o Skews can also arise as an artefact at low
concentrations of analyte as a result of common
data recording practices.

» Rarely, skews can arise when the distribution Is
truly lognormal (e.g., in GMO determinations).




Example dataset 2

Polyunsaturated fatty acids

Result, % by mass




Polyunsaturated fatty acids

Result, % by mass




Polyunsaturated fatty acids

Horwitz standard deviation

Result, % by mass

Possible bimodal distribution?
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Kernel densities--polyunsaturated fatty acids

Result, % by mass




Polyunsaturated fatty acids
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What went wrong?

Analyte defined as % fatty acid in oll.

Most labs used an internal standard method.

Hypothesis: other labs (incorrectlz) reported

result based on methyl ester peak area ratio.

Incorrect results expected to be high by a factor
of 1.05.

Ratio of modes found = 1.04.




Example 3—Ba In silicate rock

GeoPT Round 20. Test material: silicate rock
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COMPOMEMT 1: MEAM = 5930, SD= 0.501; p=0.620
COMPOMNENT 20 MEAM = 9720, SD=1.163; p=0.242
COMPOMNEMT 3: MEAM =15.285 5D =1.273,p=0138

GeoPT-20--Ba

Mixture model ey

Kernel density
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Choice of value for o

Robust standard deviation of participants’
results in round?

From perception of how well similar
methods perform?

Legislation?
Other?




Self-referential scoring

Nearly always, more than 90% of laboratories
receive a z-score between £2.

"his suggests, to both provider and participants,
nat accuracy is generally OK, whether or not
nat Is the case.

No reference is made to end-user requirements.

Z-Scores for a participant cannot be
meaningfully compared round-to-round.




What more do we need?

We need a method that evaluates the results Iin

relation to their intended use, rather than merely
describing them.

We need a method in which a score of (say) -3.1

has an meaning independent of the analyte,
matrix, or analytical method.

We need a method based on:

fitness for purpose.




Fithess for purpose

* Fitness for purpose occurs when the uncertainty
of the result u; gives best value for money.

e If the uncertainty is smaller than u; , the analysis
may be too expensive.

e If the uncertainty is larger than u; , the cost and
the probability of a mistaken decision will rise.




Fithess for purpose

* The value of uy; can sometimes be estimated
objectively by decision theory methods.

Usually us can be simply agreed between the
laboratory and the customer by professional
judgement.

In the proficiency test context, u; should be
determined by the scheme provider.

Reference: T Fearn, S A Fisher, M Thompson, and S L R Ellison,
Analyst, 2002, 127, 818-824.




A score that meets all of the criteria

e |f we now define a z-score thus:

we have a z-score that is both robustified
against extreme values and tells us about
fitness for purpose.

In an exactly compliant laboratory, scores of
2<|z|<3 will be encountered occasionally, and
scores of |z|>3 rarely.

Better performers will receive fewer of these
extreme z-scores, worse performers more.




Conclusions—optimal scoring

e Use z-scores based on fithess for
purpose.

* Estimate the consensus as the robust
mean and Its uncertainty as
If the dataset Is roughly symmetric.

o If the dataset is skewed and plausibly
composite, use a kernel density or a
mixture model to find a consensus.




And finally

 Each dataset Iis unique. It is Impossible to
define a sequence of statistical operations
that will properly handle every eventuality.

o Statistics (in the right hands) assists, but
cannot replace, professional judgement.
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