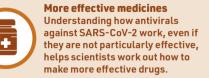


CHEM VS. COVID TIMELINE

FDA approves first COVID-19 antiviral

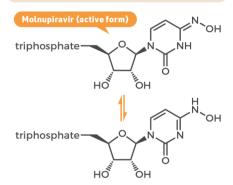
Nucleoside analogues

Nucleoside analogues, molecules which resemble naturally-occuring building blocks that make up virus RNA, have been developed for COVID-19. They're picked up by the virus enzyme which copies RNA, RNA polymerase, but stop it from functioning, stopping the virus copying itself.


The structural changes in nucleoside analogues are responsible for sabotaging the virus's RNA replication process.

Remdesivir became the first antiviral drug to be approved in the USA for the treatment of COVID-19. It is not as effective as first thought but similar drugs are in development.

How did it help?



Combination therapy
Giving antiviral drugs in
combination rather than
individually is more effective at
blocking virus replication, so the
more options we have the better.

Other treatment candidates

The WHO have said there is insufficient evidence that remdesivir is effective against SARS-CoV-2, and cautioned against its use. But another nucleoside analogue, molnupiravir, does reduce the risk of hospitalisation and death from COVID-19.

Molnupiravir exists as two interchangeable structures. One form mimicks the uridine (U) nucleoside, the other form mimicks the cytidine (C) nucleoside.

Protease inhibitor drugs have also shown promise. These drugs bind to the viral protease enzyme and stop the virus from copying itself. Pfizer's PF-07321332 is an example which is currently in clinical trials.

So ag

Future viruses

Some of the drugs being developed against SARS-CoV-2 may also be efffective against other viruses, making them potentially useful during future pandemics.

© Andy Brunning/Compound Interest 2021 - www.compoundchem.com Creative Commons Attribution-NonCommercial-NoDerivatives licence

