

Modelling the plant uptake of organic chemicals **Chris Collins**

October 11, 2010

© University of Reading 2008

www.reading.ac.uk

Aim

- To give an overview of where we are, recent developments.
- Current models and their problems.
- The way forward.
- I am at the junction between modelling and experimentation
 - Jack of all trades master of none
 - We need the continuum

Current State

Uptake pathways

Plant uptake of organic pollutants

- We need to understand to model
 - crop uptake of pollutants and pesticides
- We need to understand to remediate plant uptake can be most important component of exposure.
- Many current models based on old research e.g. Briggs-Ryan (1983). These do not always provide the best prediction of the experimental data.

Briggs and Bromilow relationships

Roots

Shoots

N.B. Solution culture experiments, limited number of chemicals, limited range of experiments.

Briggs-Ryan raltionships - soil properties

Root

Shoot

Hydrophobicity and polarity

Aerial deposition – background source

Predominant pathways

Predominant uptake pathways

Blue coloring indicates PAH spiked solution.

A: Bare roots in spiked solution; A_{ACTIVE} – shoot removed at start of the experimental period, A_{DEAD} root killed by acid treatment.

B: Plants grown in spiked solution with different PAH concentrations.

C: Plants grown in spiked solution, plant shoots in the light C_{LIGHT} and half darkness C_{DARK}.

D: Half plants grown in clean solution D_{CLEAN} ; others have half of their roots in spiked solution and half in clean solution D_{POLL} ; all the plants sharing the same air conditions.

E: Half plants grown in spiked E_{POLL} and half in clean E_{CLEAN} solution; all the plants sharing the same air conditions.

Recent findings

New work TSCF

Dettenmaier study 100s of measurements and much wider range of chemicals, others 4-8

Two photon excitation microscopy

Root uptake

Calculated degradation

Combined root uptake and soil volatilisation model

Total uptake

Fractional uptake

Modelling

Model types

• Simple regression e.g. Travis and Arms

 $\log B_v = 1.588 - (0.578 \log K_{ow})$

- Mechanistic models e.g. Trapp and Matthies
 - Growth dilution
 - Metabolism
 - Transpiration
- Fugacity models e.g. Hung and Mackay
 - Suite of partition coefficients between different environmental media and plant components.

Model types

- A note about ionisable compounds not my area of expertise.
- Separate compounds into neutral and ionic free fractions e.g. Henderson-Hasselbach equation
- Subsequent uptake following soil to root partition and movement into stem via the transpiration stream as previously discussed.

Plant uptake modelling – model inter-comparison

Plant uptake modelling – model inter-comparison

Wiversity of Reading

Model Intercomparison

	Shoot vegetables		Root vegetable s
Travis and Arms	2.2	Trapp and Matthies	1.6
Ryan et al.	1.9	Ryan et al.	1.1
Topp et al	0.9	Hung and Mackay	0.9
Hung and Mackay	0.7	Chiou et al	0.6
Chiou et al	0.6	Topp et al	0.6
Trapp and Matthies	0.5		

Data variability

Data variability

Plants Experimental variability -1

Plants experimental variability – species

Do we have the data we need?

Chemical	Plant component	Range	Mean	Data	sensitive parameters (% of
DCB	Leaf	2.1 x 1 ⁻⁵ – 1.51 x 1 ⁻³	2.0 x 10 ⁻⁴	1.3	bL ² (84)
	Root	0.04 – 1.1	0.15	0.1 (core) 0.1 (peel)	bR ² (53) f.o.c. (22)
ТСВ	Leaf	2.6 x 1 ⁻⁶ – 1.92 x 1 ⁻⁴	2.0 x 10 ⁻⁵	8.3	bL (81)
	Root	0.06 - 2.40	0.30	2.8 (core) 5.5 (peel)	bR (54) f.o.c. (23)
HCB	Leaf	2.1 x 1 ⁻⁶ - 1.51 x 1 ⁻⁴	1.8 x 10⁻⁵	4.4	bL (80.6)
	Root	4.6 x 1 ⁻⁵ - 2.2 x 1 ⁻²	1.2 x 10 ⁻³	0.08 (core) 9.5 (peel)	bR (91.3)

Models do not account for differences between core and peel

The way forward

Step 1: Dissolved concentration in soil

Chemical concentration in soil C_{Soil} is 1 mg MTBE per kg soil (wet weight). The log K_{OC} is 0.81 log $K_{\text{OW}} + 0.1 = 1.0234$, giving $K_{\text{OC}} = 10.55$. The concentration in the soil pore water C_{W} is

$$\frac{C_{\rm W}}{C_{\rm Ssoil}} = \frac{\rho_{\rm wet}}{OC \times K_{\rm OC} \times \rho_{\rm dry} + P_{\rm W} + K_{\rm AW} \times P_{\rm A}}$$
$$= \frac{1.95}{0.02 \times 10.55 \times 1.6 + 0.35 + 0.0175 \times 0.1} = 2.83$$

 $\begin{array}{l} \text{OC} = \text{organic carbon content of soil} \\ \rho_{wet} = \text{soil wet density} \\ \text{K}_{AW} = \text{air to water partition coefficient} \\ \text{P}_{W} = \text{volume fraction soil water} \end{array}$

 K_{OC} = soil water to organic carbon partition coefficien ρ_{dry} = soil dry density P_A = volume fraction soil air

Step 2: Concentration in stem

Basic equation:

$$C_{\text{Stem}}(t = \infty) = \frac{C_{\text{Xy}} \times \frac{Q}{M}}{\frac{Q}{M \times K_{\text{Wood}}} + k_{\text{E}} + k_{\text{G}}}$$

 $\log K_{Wood} = -0.266 + 0.632 \log K_{OW}$

$$C_{Xy} = TSCF \times C_W = TSCF \times 2.83 \times C_{Soil}$$

TSCF =
$$0.756 \times \exp\left\{\frac{-(\log K_{\rm OW} - 2.50)^2}{2.58}\right\} = 0.37$$

$$\frac{C_{\text{Stem}}}{C_{\text{Soil}}} = \frac{2.83 \times 0.37 \times \frac{3000}{100}}{\frac{3000}{100 \times 2.85} + (0.01 + 0.692)} = 2.80 \frac{\text{mg/kg fresh plant}}{\text{mg/kg wet soil}}$$

 $\begin{array}{ll} C_{stem} = conc. \ in \ stem & C_{Xy} = conc. \ in \ xylem \\ Q = annual \ transpiration & M = mass \ of \ woody \ stem \\ K_{Wood} = water \ to \ wood \ partition \ coefficient & K_E = metabolic \ rate \\ K_G = growth \ rate & \end{array}$

Step 3: Concentration in apples

Water flux into apples:

$$Q_{\rm F} = {\rm dw} \times 20 = 0.156 \times 20 = 3.12 \, {\rm l/kg}$$

Concentration in fruit:

$$C_{\text{Fruit}} = Q_{\text{F}} \times C_{\text{Stem}} / K_{\text{Wood}} = 3.12 \times 2.80 / 2.85 = 3.06 \times C_{\text{Soi}}$$

Chemical	log K _{OW}	Fruit	BCF T&A	BCF _{Fruit} Fruit Tree Model	BCF _{Fnutr} measured (std dev)
MTBE	1.14	Apple	1.74	3	n.d.f.
Benzene	2.02	Apple	0.54	1.6	n.d.f.
Toluene	2.75	Apple	0.2	0.37	n.d.f.
Trichloroethene	3.03	Apple	0.14	0.17	n.d.f.
Naphthalene	3.36	Apple	0.09	0.06	n.d.f.
Fluoroanthene	5.13	Apple	0.009	2.36×10^{-5}	$5.6 \times 10^{-4} (8.8 \times 10^{-4})^{a}$
Fluoroanthene		Pear	0.009	2.27×10^{-5}	$8.4 \times 10^{-5} (8.9 \times 10^{-5})^{a}$
Fluoroanthene		Plum	0.009	2.39×10^{-5}	$1.2 \times 10^{-5} (5.4 \times 10^{-6})^{a}$
Benzo[a]pyrene	6.13	Apple	0.003	7.80×10^{-8}	$1.4 \times 10^{-4} (1.1 \times 10^{-4})^{a}$
Benzo[a]pyrene		Pear	0.003	7.50×10^{-8}	$7.3 \times 10^{-6} (4.7 \times 10^{-6})^{a}$
Benzo[a]pyrene		Plum	0.003	7.90×10^{-8}	2.7×10^{-6} a
2.3.7.8-TCDD ^c	6.76	Apple	0.001	1.41×10^{-9}	"0" b
2,3,7,8-TCDD ^e		Pear	0.001	1.36×10^{-9}	"О" ^р
OCDD ^e	8.2	Apple	0.0001	4.58×10^{-14}	"0" b

TABLE II Calculated uptake of chemicals from soil into tree fruits and comparison to measured results

No genuine sensitivity analysis Pattern same as T and A Comparison with one data set

What next?

- Focus on important pathways for chemical of interest.
- Emphasise *law of parsimony*
- Validation, validation, validation
- Good experimental protocols required to allow modellers to use all results.
 - Rapid measures of bioavailable fraction SPME, silicone
 - Background air concentrations
 - Soil properties