Glossary
Allotropes
Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.
For more information on the Visual Elements image see the Uses and properties section below.
Glossary
Group
A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.
Period
A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.
Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).
Atomic number
The number of protons in an atom.
Electron configuration
The arrangements of electrons above the last (closed shell) noble gas.
Melting point
The temperature at which the solid–liquid phase change occurs.
Boiling point
The temperature at which the liquid–gas phase change occurs.
Sublimation
The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.
Density (g cm−3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.
Relative atomic mass
The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.
Isotopes
Atoms of the same element with different numbers of neutrons.
CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.
Group | 10 | Melting point | Unknown |
Period | 7 | Boiling point | Unknown |
Block | d | Density (g cm−3) | Unknown |
Atomic number | 110 | Relative atomic mass | [281] |
State at 20°C | Solid | Key isotopes | 281Ds |
Electron configuration | [Rn] 5f146d97s1 | CAS number | 54083-77-1 |
ChemSpider ID | - | ChemSpider is a free chemical structure database |
Glossary
Image explanation
Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.
Appearance
The description of the element in its natural form.
Biological role
The role of the element in humans, animals and plants.
Natural abundance
Where the element is most commonly found in nature, and how it is sourced commercially.
History
History
Atomic radius, non-bonded
Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.
Covalent radius
Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.
Electron affinity
The energy released when an electron is added to the neutral atom and a negative ion is formed.
Electronegativity (Pauling scale)
The tendency of an atom to attract electrons towards itself, expressed on a relative scale.
First ionisation energy
The minimum energy required to remove an electron from a neutral atom in its ground state.
Glossary
Common oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.
Isotopes
Atoms of the same element with different numbers of neutrons.
Key for isotopes
Half life | ||
---|---|---|
y | years | |
d | days | |
h | hours | |
m | minutes | |
s | seconds | |
Mode of decay | ||
α | alpha particle emission | |
β | negative beta (electron) emission | |
β+ | positron emission | |
EC | orbital electron capture | |
sf | spontaneous fission | |
ββ | double beta emission | |
ECEC | double orbital electron capture |
Glossary
Data for this section been provided by the British Geological Survey.
Relative supply risk
An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.
Crustal abundance (ppm)
The number of atoms of the element per 1 million atoms of the Earth’s crust.
Recycling rate
The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.
Substitutability
The availability of suitable substitutes for a given commodity.
High = substitution not possible or very difficult.
Medium = substitution is possible but there may be an economic and/or performance impact
Low = substitution is possible with little or no economic and/or performance impact
Production concentration
The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.
Reserve distribution
The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.
Political stability of top producer
A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.
Political stability of top reserve holder
A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.
Glossary
Specific heat capacity (J kg−1 K−1)
Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.
Young's modulus
A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.
Shear modulus
A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.
Bulk modulus
A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.
Vapour pressure
A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.
Podcasts
Podcasts
Listen to Darmstadtium Podcast |
Transcript :
Chemistry in its element: darmstadtium(Promo) You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry. (End promo) Meera Senthilingam This week, an element that brings fleeting moments of wonder. Here's Brian Clegg. Brian Clegg I've a coffee cup on my desk, a Christmas present from my niece, inscribed with the periodic table. There, at element 110 beneath platinum, is the clumsy and practically unpronounceable ununnilium - just a fancy way of saying 'one one oh - ium'. A range of artificial elements were originally given placeholder names like this back in 1979 by the International Union of Pure and Applied Chemistry, the body that controls the naming of chemical elements. Often this was because there was a dispute over just who had discovered the element and got the honour of naming it, but now, I'm glad to say, element 110 has a more manageable name, darmstadtium and my mug is out of date. This is one of the transfermium elements, the discontinuous block above element 100 that takes in a couple of the actinides and the row that continues after the actinides with lawrencium. If there is one thing that typifies darmstadtium it's that it is an element of speed. The first isotope discovered, darmstadtium 269, has a minuscule half life of just 270 microseconds. Before you can cry out in triumph 'We've made darmstadtium!' it is long gone. This brevity contributed to the disputes over who first made element 110. It was claimed by both the Joint Institute for Nuclear Research in Dubna, Russia in 1987 and by the Lawrence Berkeley Laboratory in 1991, but there was considerable doubt about both claims. Darmstadtium was to get its name after the location of the Gesellschaft für Schwerionenforschung, roughly translating as the 'centre for heavy ion research'. Usually contracted to the more easily pronounced GSI, and part of the impressively named German government group of establishments the Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren, the GSI is located at Darmstadt in Germany. The alternative name of wixhausium was briefly considered for the element, after Wixhausen, the part of Darmstadt where the institute is located, but darmstadtium was considered to have a better ring to it. In 1994, at the GSI, an international team slammed high energy nickel ions into a lead target. The group, led by Sigurd Hofmann, included German physicists Peter Armbruster and Gottfried Münzenberg, a pair who between them have brought six of the transfermium elements into existence. Despite throwing in 3 trillion ions per second, just 3 atoms of darmstadtium 269 were produced, decaying to hassium, seaborgium and rutherfordium in the blink of an eye. To date, a handful of other isotopes have been made, all blinking out of existence before there's a chance to investigate their properties. There is some dispute over just what the half-lives are, but the longest is probably darmstadtium 281 at 11 seconds. The expectation, if we could study a piece of darmstadtium is that this would be a silvery metal, not unlike platinum in behaviour - but short of slowing down time, no one is going to get a chance to see. It's worth taking a closer look at just how darmstadtium was brought into being. Like all the elements heavier than uranium, it does not exist at all in nature. Up to around the element 100 mark, the heavier elements can be produced by pumping in neutrons, which undergo beta decay, giving off an electron, to add extra protons to the nucleus. But for heavier atoms still, like darmstadtium, it is necessary to slam particles like the nickel ions used here into a nucleus at velocities around 10 per cent of the speed of light, giving them enough energy to overcome the powerful electromagnetic repulsion of the nucleus, and allowing fusion to take place. The nickel ions were accelerated by UNILAC, short for 'universal linear accelerator' a 120 metre long straight acceleration chamber at the GSI where a series of powerful electromagnets blast charged particles along at higher and higher speeds. The vast majority of collisions fail, but just occasionally the nuclei fuse, typically losing a small number of neutrons and settle down to a short-lived new element. In the case of darmstadtium, the nucleus soon emits alpha particles - helium nuclei consisting of two protons and two neutrons bound together - which transforms the darmstadtium into its longer-lived decay products. With so many trillions of particles being shot down the accelerator, it is a difficult task to separate the very few products where fusion has taken place. This is the job of a second piece of technology called SHIP, the Separator for Heavy Ion reactor Products. SHIP acts as a filter - by balancing electric and magnetic fields very precisely, only the particular heavy reaction products, in our case, darmstadtium, that are selected for get through without being deflected out of the way. Rather confusingly, despite its short-lived nature, you may find yourself taking a visit to Darmstadtium or even holding a meeting there. This is because the town of Darmstadt took the name from the element for its science and meetings building - in essence a convention centre - opened in 2008. If elements were insects, darmstadtium would be the mayfly of the chemical world. It exists for the most fleeting time before it transforms to something else. Darmstadium is never going to have a practical use - but its sheer brevity of existence gives it a wistful fascination. Meera Senthilingam So its lack of application is made up for by the wistful wonder of its chemistry. That was science writer, Brian Clegg, with the fast paced chemistry of darmstadium. Now next week, we get minty fresh. Lars Ohrstrom If you chew gum, you will most likely encounter another result of rhodium catalysis, menthol. Originally extracted from different species of mint plants, the demand for this substance, with its characteristic minty scent, far exceeds the natural sources and it is now produced in several thousand tonnes a year in the process devised by Japanese Nobel Prize winner Ryoji Noyori. Meera Senthilingam And for other uses of the rare element, rhodium, join Lars Ohrstrom in next weeks Chemistry in its element and until then, I'm Meera Senthilingam and thank you for listening. (Promo) Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements. (End promo)
|
Video
Video
Resources
Resources
Terms & Conditions
Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011
Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.
Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.
The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.
If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.
Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.
The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.
In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.
We hope that you enjoy your visit to this Site. We welcome your feedback.
© Murray Robertson 1998-2017.
Data
W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.
Uses and properties
John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.
Supply risk data
Derived in part from material provided by the British Geological Survey © NERC.
History text
Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.
Podcasts
Produced by The Naked Scientists.
Periodic Table of Videos
Created by video journalist Brady Haran working with chemists at The University of Nottingham.