Glossary


Allotropes
Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.


For more information on the Visual Elements image see the Uses and properties section below.

 

Glossary


Group
A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).


Atomic number
The number of protons in an atom.


Electron configuration
The arrangements of electrons above the last (closed shell) noble gas.


Melting point
The temperature at which the solid–liquid phase change occurs.


Boiling point
The temperature at which the liquid–gas phase change occurs.


Sublimation
The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.


Density (g cm−3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.


Relative atomic mass
The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.


Isotopes
Atoms of the same element with different numbers of neutrons.


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.


Fact box

Group 14  Melting point 231.928°C, 449.47°F, 505.078 K 
Period Boiling point 2586°C, 4687°F, 2859 K 
Block Density (g cm−3) 7.287 
Atomic number 50  Relative atomic mass 118.710  
State at 20°C Solid  Key isotopes 120Sn 
Electron configuration [Kr] 4d105s25p2  CAS number 7440-31-5 
ChemSpider ID 4509318 ChemSpider is a free chemical structure database
 

Glossary


Image explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Appearance

The description of the element in its natural form.


Biological role

The role of the element in humans, animals and plants.


Natural abundance

Where the element is most commonly found in nature, and how it is sourced commercially.

Uses and properties

Image explanation
A common alchemical symbol for tin is shown here embossed on a ‘tin’ can. Tin cans are traditionally made from steel coated with tin.
Appearance
A soft, pliable metal. Below 13°C it slowly changes to a powder form.
Uses
Tin has many uses. It takes a high polish and is used to coat other metals to prevent corrosion, such as in tin cans, which are made of tin-coated steel. Alloys of tin are important, such as soft solder, pewter, bronze and phosphor bronze. A niobium-tin alloy is used for superconducting magnets.

Most window glass is made by floating molten glass on molten tin to produce a flat surface. Tin salts sprayed onto glass are used to produce electrically conductive coatings.

The most important tin salt used is tin(II) chloride, which is used as a reducing agent and as a mordant for dyeing calico and silk. Tin(IV) oxide is used for ceramics and gas sensors. Zinc stannate (Zn2SnO4) is a fire-retardant used in plastics.

Some tin compounds have been used as anti-fouling paint for ships and boats, to prevent barnacles. However, even at low levels these compounds are deadly to marine life, especially oysters. Its use has now been banned in most countries.
Biological role
Tin has no known biological role in humans, although it may be essential to some species. The metal is non-toxic, but organo-tin compounds can be poisonous and must be handled with care. Plants easily absorb tin.
Natural abundance
Tin is found principally in the ore cassiterite (tin(IV) oxide). It is mainly found in the ‘tin belt’ stretching through China, Thailand and Indonesia. It is also mined in Peru, Bolivia and Brazil. It is obtained commercially by reducing the ore with coal in a furnace.
  Help text not available for this section currently

History

Tin had a direct impact on human history mainly on account of bronze, although it could be used in its own right, witness a tin ring and pilgrim bottle found in an Egyptian tomb of the eighteenth dynasty (1580–1350 BC). The Chinese were mining tin around 700 BC in the province of Yunnan. Pure tin has also been found at Machu Picchu, the mountain citadel of the Incas.

When copper was alloyed with around 5 per cent of tin it produced bronze, which not only melted at a lower temperature, so making it easier to work, but produced a metal that was much harder, and ideal for tools and weapons. The Bronze Age is now a recognised stage in the development of civilisation. How bronze was discovered we do not know, but the peoples of Egypt, Mesopotamia, and the Indus valley started using it around 3000 BC.
 
Glossary

Atomic radius, non-bonded
Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.


Covalent radius
Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.


Electron affinity
The energy released when an electron is added to the neutral atom and a negative ion is formed.


Electronegativity (Pauling scale)
The tendency of an atom to attract electrons towards itself, expressed on a relative scale.


First ionisation energy
The minimum energy required to remove an electron from a neutral atom in its ground state.

Atomic data

Atomic radius, non-bonded (Å) 2.17 Covalent radius (Å) 1.40
Electron affinity (kJ mol−1) 107.298 Electronegativity
(Pauling scale)
1.96
Ionisation energies
(kJ mol−1)
 
1st
708.581
2nd
1411.793
3rd
2943.054
4th
3930.332
5th
6973.96
6th
-
7th
-
8th
-
 

Glossary


Common oxidation states

The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.


Isotopes

Atoms of the same element with different numbers of neutrons.


Key for isotopes


Half life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Oxidation states and isotopes

Common oxidation states 4, 2
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  112Sn 111.905 0.97
  114Sn 113.903 0.66
  115Sn 114.903 0.34
  116Sn 115.902 14.54
  117Sn 116.903 7.68
  118Sn 117.902 24.22
  119Sn 118.903 8.59
  120Sn 119.902 32.58
  122Sn 121.903 4.63
  124Sn 123.905 5.79 > 2.2 x 1018 β-β- 
 

Glossary

Data for this section been provided by the British Geological Survey.


Relative supply risk

An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.


Crustal abundance (ppm)

The number of atoms of the element per 1 million atoms of the Earth’s crust.


Recycling rate

The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.


Substitutability

The availability of suitable substitutes for a given commodity.
High = substitution not possible or very difficult.
Medium = substitution is possible but there may be an economic and/or performance impact
Low = substitution is possible with little or no economic and/or performance impact


Production concentration

The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.


Reserve distribution

The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.


Political stability of top producer

A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.


Political stability of top reserve holder

A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.


Supply risk

Relative supply risk 6.7
Crustal abundance (ppm) 1.7
Recycling rate (%) >30
Substitutability Unknown
Production concentration (%) 46
Reserve distribution (%) 31
Top 3 producers
  • 1) China
  • 2) Indonesia
  • 3) Peru
Top 3 reserve holders
  • 1) China
  • 2) Indonesia
  • 3) Brazil
Political stability of top producer 24.1
Political stability of top reserve holder 24.1
 

Glossary


Specific heat capacity (J kg−1 K−1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.


Young's modulus

A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus

A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.


Bulk modulus

A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour pressure

A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

Specific heat capacity
(J kg−1 K−1)
227 Young's modulus (GPa) 49.9
Shear modulus (GPa) 18.4 Bulk modulus (GPa) 58.2
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - 1.26
x 10-9
8.62
x 10-6
0.0031 0.207 4.85 56.3 - - -
  Help text not available for this section currently

Podcasts

Listen to Tin Podcast
Transcript :

Chemistry in its element: tin


(Promo)

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

(End promo)

Chris Smith

Hello, this week the element that changed the course of industry and also gave birth to the Bronze Age. We find out why the Romans came to Britain and why your organ can go out of tune in winter perhaps irreversibly. But tin fans should watch out because much of what we call tin isn't.

Katherine Holt

Tin cans, tin foil, tin whistles, tin soldiers.....these are that things that come to mind when we think of tin. Which is unfortunate, as tin cans are actually made from steel; tin foil is made from aluminium and tin whistles....well you get the idea. To be associated with a list of obsolete consumable items is especially unfortunate for tin, when we consider that it was responsible for literally changing civilisation! Have you heard of the Bronze Age? Well, some enterprising metal workers at the end of the Stone Age discovered that the addition of a small amount of tin into molten copper resulted in a new alloy. It was harder than copper but also much easier to shape, mould and sharpen. This discovery was so revolutionary that that Bronze Age was born - a name given to any civilisation which made tools and weapons from this alloy of copper and tin.

So important was tin that the secrets of its trade were closely guarded. The ancient Greeks spoke of the 'Cassiterides ' or 'Tin Islands' which were believed to lie off the north west coast of Europe. These mysterious islands have never been identified and probably never existed. All the Greeks knew was that tin came to them by sea and from the north-west and so the story arose of the tin islands. It is likely the tin came from northern Spain and from Cornwall. In fact, the strategic importance of the Cornish tin mines is considered one of the reasons why the Roman Empire invaded Britain.

Tin may have played another historical role - this time in the defeat of Napolean's army in the Russian campaign of 1812. It has been claimed that in the severe cold the tin buttons on the soldier's uniforms disintegrated into powder, leading to severe loss of life from hypothermia. The accuracy of this story is debatable, but the transformation of tin from a shiny metal into a grey powder at low temperatures is chemical fact.

In the cold winters of Northern Europe the loss of tin organ pipes as they began to disintegrate into dust has been known for centuries as 'tin pest', 'tin disease' or 'tin leprosy'. This process is actually a very simple chemical transformation of one structural form of tin - silvery, metallic 'white tin' or 'beta tin' - into another - brittle, non-metallic 'grey tin' or 'alpha tin'. For pure tin the transition occurs at 13.2 oC but the transition temperature is lower, or does not occur at all, if there are enough impurities present, for example if tin is alloyed with another metal.

A modern day problem with 'tin pest' has thus arisen, as the tin-lead alloys used to coat leads in electrical equipment have sometimes been replaced with pure tin due to new environmental legislation. In cold temperatures the metallic beta tin coating transforms into non-conducting, brittle alpha tin and falls off the leads. The loose alpha tin powder then moves around inside the equipment, but because it is non-conducting it doesn't cause a problem. However, in warmer temperatures this alpha tin powder transforms back to conducting beta tin, leading to short circuits and all kinds of problems.

The way to defeat 'tin pest' is to mix tin with other metals, and these days tin is mainly used to form alloys - for example bronze, pewter and solders. Since tin is the most tonally resonant of all metals it is used in bell metals and to make organ pipes, which are generally a mix of 50:50 tin and lead. The proportion of tin generally determines the pipe's tone.

And so we return to the humble tin can. Although not made from tin, cans are often coated with tin on the inside to prevent corrosion. So while it may now seem that tin plays a small role in our everyday lives, remember that once it figured in the rise and fall of civilisations.

Chris Smith

So it was the tin that lured the Romans to Britain - funny that, there was me thinking it was the wonderful weather. Telling Tin's tale was Katherine Holt from UCL. Next week the substance that makes you see red.

Brian Clegg

If you are listening to this podcast on a computer with a traditional colour monitor Europium will be enhancing your view of the Chemistry World website. When colour TVs were first developed, the red pixels were relatively weak, which meant the whole colour spectrum had to be kept muted. But a phosphor doped with europium proved a much better, brighter source of red and is still present in most surviving monitors and TVs that predate the flat screen revolution.

Chris Smith

And you can hear from Brian Clegg how the power of Europium was harnessed in the first place and how it was discovered on next week's Chemistry in its Element, I hope you can join us. Until then, I'm Chris Smith, thank you for listening and goodbye.

(Promo)

Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements.

(End promo)
  Help text not available for this section currently
  Help Text

Resources

Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

Visual Elements images and videos
© Murray Robertson 1998-2017.

 

Data

W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.

 

Uses and properties

John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.

 

Supply risk data

Derived in part from material provided by the British Geological Survey © NERC.

 

History text

Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.

 

Podcasts

Produced by The Naked Scientists.

 

Periodic Table of Videos

Created by video journalist Brady Haran working with chemists at The University of Nottingham.