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I have chosen to illustrate the use of this algorithm with the commercially available program

KaleidaGraph™ (Synergy Software, Reading, PA, USA).  This program is one of several

microcomputer data presentation and analysis programs that have been available for about a decade

and that permit the fitting of data to user-defined functions by means of the Levenberg-Marquardt

algorithm or some similar procedure.1,2  (A few others are Axum, Igor, Origin, and SigmaPlot.)

Compared with many others, KaleidaGraph is less expensive; and it is available in virtually identical

forms for the Macintosh and PC platforms, with files created on one usable by the other.  Its use as a

data analysis tool in the physical chemistry teaching laboratory is described elsewhere (available on

request).3  For more background on the mathematical and statistical aspects of nonlinear least

squares, the reader is directed to a recently published study of bias and inconsistency in nonlinear

fitting, and the works cited therein.4

In the first example, eight calibration points were generated at integer x values 1-8 using the

function y = 1 + 5 x + 0.01 x2 – 0.025 x3, and were treated for constant error (σ = 2.5) and for

proportional error (σ = 0.14 y).  The KaleidaGraph (KG) data sheet for these calculations is

illustrated here in Fig. 1.  After the x values have been entered in Column 0, the y values can be

generated using a "Formula Entry" window, which is opened from the "Windows" menu.  In

"Formula Entry" computations, KG identifies variables by their column number, so this calculation is

performed with the following entry in the window:

C1 = 1 + 5.*C0 + .01*C0^2 - .025*C0^3 . (1)

Columns 2 and 3 contain the σ values for constant error (2.5) and proportional error, respectively;

the latter are calculated using the following "Formula Entry":

c3=c1*.14 . (2)

(Note that the column labels are not case-sensitive.)

For the computation of the error bands illustrated in Fig. 1 of the paper, the "unknown" in Row

9 has been masked out.  The data are plotted by choosing "Scatter" plot under the "Gallery" menu.
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Fig.  1 .   KaleidaGraph data sheet
for calibration examples illustrated
in Figs. 1 and 2 of the published
paper.

Error bars can then be added by selecting under the "Plot" menu.  The curve fit is initiated by picking

"General" under the "Curve Fit" menu and then selecting one of the named fits (or adding one, if

necessary).  By clicking on "Define" in the instruction box that opens, the user can either modify the

existing fit function or enter a new one.  The "Define" box also permits one to specify the

convergence criterion and to select several other options, including "Weight Data."  When this option

is selected, the program prompts the user for the column containing the σ values for the data.  In the

present case, the two different weighting choices are treated by simply selecting the appropriate

column ("sig1" or "sig2") in turn.  The program then properly calculates the weights as w i = σi–2.

Figure 2 illustrates the results from three different fits of these data.  The box at upper right

gives parameters and their errors for a fit to the same function used to generate the "data."  To obtain

these results, the user need only type the following in the "Define Fit" box:

a + b*x + c*x^ 2 + d*x^ 3; a=1; b=1; c=1; d=1 . (3)

Note that initial values must be given for each adjustable parameter; however, in the present case

these values need only be nonzero, because the fit is linear (though not straight-line), so convergence

is assured.  The results box at lower right in the figure shows the effect of recentering the fit at x = 8,

obtained by using

a + b*(x-8) + c*(x-8)^ 2 + d*(x-8)^ 3 (4)

as the fit function.  [If this is run following the fit to Eq. (3), the initial values need not be given, as

the program will still have the previous values in its memory.]  Note that now the value of the

calibration function at x = 8 is a, and the error in a is the error in the calibration function at this x.  By

altering the value of the offset from 8 to other values of interest, one can trace out the error band as a

function of x.  [The fit to Eq. (3) has already given the error at x = 0, again as the error in a.]
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Fig.  2 .   Calibration plot shown for constant error, including results from three different user-
defined least-squares fits.

The third results box (inside the figure axes) shows the effect of dropping the quadratic term

from Eq. (3).  This term was intentionally made statistically insignificant for the sake of this

illustration.  After the deletion of the quadratic term, the intercept still remains uncertain (1 σ) by three

times its magnitude and might also be dropped from the fit model.  Whether this is appropriate or not

depends on the situation.  If the fit model is based on some accepted theory, in which the parameters

have physical significance, such deletions can lead to systematic errors in the remaining parameters

and their errors.  Hence, if the parameters and their errors are a goal of the analysis, such deletions

should be avoided, even if, as here, the values are statistically insignificant.  On the other hand, much

calibration fitting is ad hoc in nature, with terms included to improve the quality and reliability of the

fit.  The goal of the fit is the fit function itself, not its parameters.  In such a case, the deletion of

insignificant parameters is warranted.  For example, in the calibration of fluorescence data, an

intercept might be included to allow for interferences from unknown contaminants in the samples and

calibrants.  The observation of a statistically undefined intercept can be taken as prima facie evidence

that such interferences are not a problem, and dropping the intercept from the fit is then justified.

The quantity "Chisq" in the fit results boxes is the chi-square value, defined as χ2 = Σ w i δ i2 =

Σ (Fi/σi)2, where δ i is the residual for the ith point, given in the present case by Fi from Eq. (8) in

the paper.  Since these fitted "data" are exact, the value of χ2 is of no interest here (except perhaps to
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show the slight mismatch when the quadratic term is dropped).  However, for actual data, its

behavior would provide additional guidance on the matter of keeping or dropping terms from the fit

model.  The statistical properties of χ2 in least-squares fitting are discussed elsewhere.1,2,4   For

present purposes it suffices to note that rounding or otherwise altering a fit parameter by 1/3 of its

standard error produces an insignificant increase in χ2.5  Thus, dropping the intercept in the case just

discussed is supported also by statistical considerations of χ2.

Next consider estimating the unknown concentration x0 and its error.  For this purpose I will

use the exponential function defined in Eq. (11) of the paper, for the case of proportional error in y

("sig2").  Row 9 in the data sheet must first be unmasked for inclusion in the plot and fit.  The

dummy x value in this row just serves to differentiate between this value and the calibration points, as

 is noted in the paper.  Since the fit is now a truly

nonlinear one, the user must take care in the choice

of initial parameter values, or the fit may diverge.

Fig.  3 .   Results from a fit of the calibration
data and "unknown" to Eq. (11) in the
paper.  The unknown is f.

y = (x>8)?(a+b*(1-exp(-c*f))...

ErrorValue

2.34575-0.148968a

15.204341.8234b

0.1087840.157038c

0.9071134.18577f

NA0.156492Chisq

NA0.999756R

The results of such a fit (Fig. 3) yield a value

of 4.19(91) for x0 and its standard error.  As before,

the intercept a in this fit is statistically negligible.

Dropping it from the model leads to the results in

Fig. 4, from which x0 = 4.20(87).  The two models

thus differ negligibly in their estimation of the

unknown in this case.  In fact, this relationship

remains true except in the extrapolation region at low

x, where the latter model (no a) yields much more

Fig.  4 .   Rerun of fit of Fig. 3 without
intercept parameter.

y = (x>8)?(b*(1-exp(-c*f))):...

ErrorValue

11.129642.5464b

0.05486140.151139c

0.8718584.20157f

NA0.160719Chisq

NA0.999750R

precise estimates, as expected.

As has been noted in the paper, multiple

unknowns can be accommodated easily by just

entering in the data sheet additional rows like row 9,

each containing a dummy x value and a measured y

(y0) and its error.  Each such row is unmasked in

turn, and the fit is rerun by clicking in an "update"

box on the data sheet.

[The user new to KG should note that the default labels for adjustable fit parameters are m1–

m9.  If the Macro Library is loaded during installation, the alternate definitions a = m1, b = m2, c =

m3, and d = m4 will be in place; but the user will need to enter in the library the definitions for

parameters beyond m4, e.g. the use of f (= m5) in the fits that yielded Figs. 3 and 4.]
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Fig.  5 .   Results from unweighted fit
of "SC" data in Table 1 of Ref. 6.

y = a + b*x

ErrorValue

0.32455412.6429a

0.005359840.398143b

NA9.65257Chisq

NA0.998553R

In all of the calculations discussed up to this point, the

y-error in the data has been assumed to be known a priori.

The final example in the paper treats actual data and assumes

that the y-error is assessed a posteriori, from the data

themselves.  The data of note are the 18 standard calibration

points from Table 1 of the paper by Campaña, et al.,6

describing their program ALAMIN.  The "General" routine

in KG is again used to carry out an unweighted fit of these

data to a straight line.  (This fit can be done by selecting

"Linear" under the Curve Fit menu; however, only the "General" option provides error estimates for

the parameters.)  The results (Fig. 5) show parameters and errors in agreement with those shown in

Fig. 1 of Ref. 6.  In an unweighted fit, KG assumes σ = 1 in computing "Chisq."  Thus, this

quantity becomes just Σ δ i2, from which the variance in y is

estimated in the usual way, as sy2 = (Σ δ i2)/ν, where ν
(degrees of freedom) = n – p = 18 (# points) – 2 (#

parameters) here.  The result for sy is 0.77671, in agreement

with the quantity Ss in Fig. 1 of Ref. 6.

Fig.  6 .   Same fit as in Fig. 5,
recentered at x = 40.

y = a + b*(x-40)

ErrorValue

0.19075828.5686a

0.005359840.398143b

NA9.65257Chisq

NA0.998553R
Other quantities in this figure of Ref. 6 can be

reproduced by using the polynomial recentering method and

the new algorithm.  For example, "Rp" and "S(R)" are

obtained as a and (sa2 + sy2)1/2, respectively, using the

recentering method, i.e., fitting to y = a + b (x – 20), y =

a + b (x – 40), etc.  Sample results are shown in Fig. 6.  The quantities "Sc" are the estimated errors

in x0 for y0 values obtained by averaging each group of three calibrants at a given c in Table 1 of Ref.

6.  These can be obtained using the new algorithm by running either (1) a weighted fit with all 18

calibration values given σ values = sy and each y0 value in

turn given σ = sy/ 3, or (2) an unweighted fit having each

y0 entered in triplicate.  In the latter case, however, KG

miscounts the degrees of freedom (18 instead of 16), so the

resulting errors in x0 must be scaled by 9/8 to correct for

this.  The reason for this need for different treatments for

weighted and unweighted fits is that for the former, KG

assumes a priori data errors and computes V = A–1, as

given in Eq. (3) in the paper, while for unweighted fits, it

assumes a posteriori errors, takes weights = 1, and
Fig.  7 .   Determination of "Sc"  

(= 1.2231) for "c3" in Ref. 6.

y = (x>100)?(a+b*c):(a+b*x)

ErrorValue

0.32455212.6429a

0.005359810.398143b

1.2231459.4187c

NA16.0002Chisq

NA0.998570R
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computes V = sy2 A–1, with sy2 evaluated as already noted, as "Chisq"/ν.  Some typical results for

the "weighted" approach are illustrated in Fig. 7.
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