USING BLOOD HEMOGLOBIN FOR BLOOD ANALYSIS.

Vanesa Sanz, Susana de Marcos and Javier Galbán*.

Analytical Biosensors Group, Analytical Chemistry Department, Faculty of Sciences, University of Zaragoza and Institute of Nanotechnology, Zaragoza-50009, SPAIN.

Index:

1 pH effect on the autoxidation kinetic	ESI-2
2 H ₂ O ₂ calibration lines	ESI-3
3 Study of the Hb/GOx electron transfer	ESI-5

1.-pH effect on autoxidation kinetic

The **figure ESI-1** shows the effect of the pH on the HbII.O₂ autoxidation (\blacklozenge)and HbII.O₂/H₂O₂ reaction (\blacksquare). As can be seen for low pH values, the autoxidation dominates. For pH=4 or higher the HbII.O₂/H₂O₂ dominates; for pH=5 or higher the autoxidation is negligible.

Figure ESI-1. Conditions: blood dilution 1/250 in citrate buffer at different pH and $2.2*10^{-5}$ M H₂O₂ (no H₂O₂ addition in the autoxidation assays)

2.-H₂O₂ calibration lines

As has been indicated the equation (9) in the main text admits several simplifications depending on the measurement times considered. Table **ESI-1** shows the most important simplifications for the purposes of this paper and figures **ESI-2** and **ESI-3** demonstrate how these simplified equations are fulfilled for the time interval given.

t. interval	Simplification applied	Mathematical model	K ^{Hb} , M ⁻¹ s ⁻¹
Full record	None	$\Delta Abs_{576,t} = \frac{2\Delta \varepsilon_{576} [Hb]_0 [H_2O_2]_0 (1 - e^{([Hb]_0 - 2[H_2O_2]_0) k_{Hb}t})}{2[H_2O_2]_0 - [Hb]_0 e^{([Hb]_0 - 2[H_2O_2]_0) k_{Hb}t}} $ (ESI-1)	14 ± 1
> 2000 s	$[Hb]_{o} > 2[H_{2}O_{2}]_{o}$	$\Delta Abs_{576} = 2\Delta \varepsilon_{576} [H_2 O_2]_0 \qquad (ESI-2)$	
	[Hb]₀ < 2[H ₂ O ₂]₀	$\Delta Abs_{576} = \Delta \varepsilon_{576} [Hb]_{o} \qquad (ESI-3)$	
< 500 s	Taylor polynomial approach $(e^{-x} \approx 1-x)$ (11)	$\Delta Abs_{576,t} = \Delta \varepsilon_{576} \frac{2[Hb]_{o} k_{Hb} t}{1 + [Hb]_{o} k_{Hb} t} [H_2O_2]_0 \qquad (ESI-4)$	15 ± 1
< 150 s	* Taylor polynomial approach (11) * 1+ [Hb] ₀ $k_{Hb}t \approx 1$	$\Delta Abs_{576,t} = 2\Delta \varepsilon_{576} [Hb]_{o} k_{Hb} [H_2O_2]_{0} t$ (ESI-5)	14 ± 2

 Table ESI-1.- Different forms of equation (9) depending of the time interval considered

Figure ESI-2. Inverse of $\triangle Abs_{576t}$ change as a function of the inverse of time fitting

according to equation (ESI-4) where there is a linear relationship.

Figure ESI-3. $\Delta Abs_{576,t}$ change as a function of the inverse of time fitting according to

equation (ESI-5).

3.- Study of the Hb/GOx electron transfer

1) The conclusion given in (Page 6, Main text)

a) The only Hb species reacting with GOx is HbIII (the same oxidation state as in HRP) yielding HbIV⁺ by intramolecular reduction,

can be supported by results given in figure **ESI-4**. This figure shows the ΔAbs_{576} variation versus time for different GOx concentrations. As can be seen, when the GOx concentration increases the absorbance variation decreases owing to the fact that the HbIV concentration increases as a result of the reaction between HbIII and GOx (see figure 2 of the Main test: the difference between molar absorptivities is lower for HbIIO₂/HbIV than for HbIIO₂/HbIII so that the absorbance variation is lower in the first case).

Figure ESI-4. $\Delta Abs_{576,t}$ change as a function of time for different GOx concentrations in absence of azide. Experimental conditions: $4.3*10^{-5}$ M Hb, $5.6*10^{-5}$ M glucose concentrations and different GOX concentrations: **a**) $6.2*10^{-7}$ M (red); **b**) $1.2*10^{-6}$ M (black); **c**) $1.0*10^{-5}$ M (blue); **d**) $5.0*10^{-5}$ M (green).

Electronic Supplementary Information......ESI-6

2) The conclusion given in (Page 6, Main text)

b) Azide partially inhibits the electron transfer between HbIII and GOx

is supported by data in figure ESI-5.

Figure ESI-5. $\Delta Abs_{576,t}$ change as a function of time for different GOx concentrations in presence of azide. Experimental conditions: $4.3*10^{-5}$ M Hemoglobin , $5.6*10^{-5}$ M glucose concentrations and different GOx concentrations: **a**) $9.1*10^{-7}$ M (red); **b**) $5.1*10^{-6}$ M (black); **c**) $1.0*10^{-5}$ M (blue).