Supplementary Information

An Oxo-Bacteriochlorin Derivative for Long-Wavelength Fluorescence Ratiometric Alcohol Sensing

Kosuke Takano, Shin-ichi Sasaki, Daniel Citterio, Hitoshi Tamiaki and Koji Suzuki

Synthesis and spectral characterization of the fluororeceptor docosyl 3-trifluoroacetyl-8-oxo-bacteriochlorin (BC-1)

General

¹H-, ¹³C- and ¹⁹F-NMR spectra were recorded on a JEOL JNM-600HR spectrometer in CDCl₃. Chemical shifts are reported relative to the residual solvent peak or the external standard: δ = 7.26 ppm (CHCl₃) for ¹H-NMR, δ = 77.0 ppm (¹³CDCl₃) for ¹³C-NMR, and –77.0 ppm (CF₃COOD) for ¹⁹F-NMR. Proton peaks were assigned by ¹H-¹H COSY and NOESY or ROESY spectra, and carbon signals except for quaternary peaks were assigned by DEPT and ¹³C-¹H COSY spectra. Electronic absorption and fluorescence emission spectra were measured on Hitachi U-3500 and F-4500 spectrophotometers, respectively. Fluorescent emission quantum yield was determined at room temperature using a Hamamatsu Photonics absolute PL quantum yield measurement system C9920-02. FT-IR spectra in CH₂Cl₂ were measured with a Jasco FT/IR 6200 spectrometer. Atmospheric pressure chemical ionization (APCI) quadrupole mass spectra (MS) and high resolution (HR) fast atomic bombardment (FAB) MS were measured by a Shimadzu LCMS-2010 EV apparatus and a JEOL GCmate II

spectrometer, respectively. APCI-MS samples were injected as MeOH solutions. A FAB-MS sample for HRMS measurement was dissolved in CH₂Cl₂, *m*-nitrobenzyl alcohol and glycerol were used as the matrix, and PEG1000 was added as an external reference. GPC was performed with recycling preparative high-performance liquid chromatography LC-908 (Japan Analytical Industry) with a connected polystyrene packed column (Jaigel 1H) using CHCl₃ as an eluent.

1,3-Dichlorotetrabutyl distannoxane $[(Bu_2ClSn)_2O]$ was purchased from Aldrich. 1-Docosanol and osmium tetraoxide were purchased from Tokyo Chemical Industry and Nacalai Tesque, respectively. Methyl 3-trifluoroacetyl-3-devinylpyropheophorbide-*a* (1) was prepared as previously reported.^{S1}

Docosyl 3-trifluoroacetyl-8-oxo-bacteriochlorin BC-1 (3)

The synthesis route for the fluororeceptor **BC-1** is outlined in Scheme S1. According to the reported procedure,^{S2} 3-trifluoroacetyl-chlorin **1** (278 mg, 0.45 mmol) was reacted with OsO₄ (ca. 200 mg) in CH₂Cl₂ and pyridine, then the resulting osmium ester was cleaved by H₂S. The crude product was roughly purified by a short column of silica gel column (MeOH-CH₂Cl₂, 1:19) to give the corresponding 7,8-*cis*-dihydroxy-bacteriochlorin (180 mg, 61%) as a stereoisomeric mixture, which was used without further purification. VIS (CH₂Cl₂) λ_{max} 762 (relative intensity, 73%), 549 (28), 356 nm (100); MS (APCI) *m/z* 653 (M+H⁺), 685 (M+MeOH+H⁺).

The above *cis*-diol (163 mg, 0.25 mmol) was dissolved in CF₃COOH (20 ml), and the mixture was stirred for 30 min at room temperature. The mixture was poured into water and extracted with CH₂Cl₂. The extract was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by silica gel chromatography (Et₂O-CH₂Cl₂, 1:9) to give **2** (75 mg, 47%) as a 7-epimeric mixture. VIS (CH₂Cl₂) λ_{max} 736 (relative intensity, 70%), 556 (17), 397 nm (100); VIS (EtOH) λ_{max} 685 (relative intensity, 47%), 626 (16), 532 (13), 502 (13), 384 nm (100); ¹H-NMR $\delta = 9.42/9.41$ (1H, s, 10-H), 8.96 (1H, s, 5-H), 8.69 (1H, s, 20-H), 5.17, 5.02 (each 1H, d, J = 20 Hz, 13¹-CH₂), 4.42 (1H, q, J = 7 Hz, 18-H), 4.23 (1H, d, J = 9 Hz 17-H), 3.65/3.64 (3H, s, 12-CH₃), 3.58 (3H, s, COOCH₃), 3.56 (3H, s, 2-CH₃), 2.66, 2.58, 2.33, 2.23 (1H+3H+1H+1H, m, 7-CH₂ and 17-CH₂CH₂), 1.89/1.87 (3H, s, 7-CH₃), 1.79 (3H, d, J = 7 Hz, 18-CH₃), 0.48/0.47 (3H, t, J = 7 Hz, 7¹-CH₃), 0.13, -1.08 (each 1H, br-s, NH); MS (APCI) *m/z* 635 (M+H⁺), 667 (M+MeOH+H⁺).

According to the reported procedure,^{S3} transesterification of **2** (30 mg, 0.047 mmol) was performed with 1-docosanol (164 mg, 0.50 mmol) and [(Bu₂ClSn)₂O] (13 mg, 0.02 mmol) in toluene (20 ml). The crude product was purified by silica gel chromatography (Et₂O-CH₂Cl₂, 1:49) followed by GPC to give **3** (35 mg, 82%) as a 7-epimeric mixture. VIS (EtOH) λ_{max} 685 (relative intensity, 46%), 625 (16), 532 (13), 502 (13), 384 nm (100); λ_{flu} (EtOH) 696 nm; $\Phi_{EtOH} = 0.12$; ¹H-NMR $\delta = 9.423/9.419$ (1H, s, 10-H), 8.96 (1H, s, 5-H), 8.68 (1H, s, 20-H), 5.18, 5.02 (each 1H, d, J = 20 Hz) 13^{1} -CH₂), 4.43 (1H, dq, J = 2, 7 Hz, 18-H), 4.23 (1H, br-d, J = 9 Hz 17-H), 4.41 (2H, m, 17²-COOCH₂), 3.58 (3H, s, 2-CH₃), 3.56 (3H, s, 12-CH₃), 2.66, 2.59, 2.32, 2.24 (1H+3H+1H+1H, m, 7-CH₂ and 17-CH₂CH₂), 1.89/1.87 (3H, s, 7-CH₃), 1.78 (3H, d, J 18-CH₃), 1.51 (2H, m, 17²-COOCCH₂), 1.23-1.19 (38H, 7 Hz. m. 17^{2} -COOC₂(CH₂)₁₉), 0.87 (3H, t, J = 7 Hz, 17^{2} -COOC₂₁CH₃), 0.48/0.47 (3H, t, J = 7Hz, 7¹-CH₃), 0.12, -1.09 (each 1H, br-s, NH); ¹³C-NMR δ = 208.8 (C13¹), 195.0 (C8), 182.2 (g, ${}^{2}J_{C-F} = 38$ Hz, C3¹), 172.9, 170.6, 167.3, 160.7, 148.4, 145.5, 140.1, 138.2, 138.1, 136.4, 131.6, 128.8, 126.8 (C1, 2, 3, 4, 6, 9, 11, 12, 13, 14, 16, 17³, 19), 116.4 (q, ${}^{1}J_{C-F} = 289 \text{ Hz}, \text{ C3}^{2}$, 110.3 (C15), 100.3 (C10), 97.3 (C20), 95.0 (C5), 64.9 (C17⁵), 55.84/55.81 (C7), 51.5 (C17), 49.7 (C18), 47.7 (C13²), 31.9, 31.5, 31.4, 31.0, 29.71,

29.66, 29.63, 29.58, 29.5, 29.4, 29.3, 29.2, 28.52, 28.50, 25.8, 23.07, 23.06, 22.7, 22.63, 22.57 (7-CH₂, 7-CH₃, C17¹, C17², C17⁶-C17²⁵, several peaks appear to overlap at 29.6 ppm), 14.1 (C17²⁶), 12.9 (q, ${}^{5}J_{C-F} = 3$ Hz, C2¹), 11.8 (C12¹), 8.8 (C7²); 19 F-NMR $\delta = -79.66$ (s, 3¹-CF₃); IR (CH₂Cl₂) ν 1711, 1697, 1622 cm⁻¹; MS (APCI) *m/z* 930 (M+H⁺), 962 (M+MeOH+H⁺); HRMS (FAB) *m/z* 929.5762 (MH⁺), calcd for C₅₅H₇₅F₃N₄O₅ 929.5768.

References

- S1 S. Sasaki and H. Tamiaki, *Tetrahedron Lett.*, 2006, 47, 4849-4852.
- S. Sasaki, M. Omoda, and H. Tamiaki, J. Photochem. Photobiol. A: Chem., 2004, 162, 307-315.
- S3 S. Sasaki and H. Tamiaki, *Tetrahedron Lett.*, 2006, 47, 4965-4968.

Scheme S1. Synthesis route for the fluororeceptor BC-1 (3).

Figure S5a. Fluorescence emission spectra of an ethanol sensing membrane of composition M2 (35 mol% TDMACl) upon continuous flow (0.5 ml/min) exposure to phosphate-buffered (pH 6.8) aqueous ethanol solutions (exc. 631 nm).

Figure S5b. Relative changes of the ratiometric emission signal ($I_{751 nm} / I_{701 nm}$) for a membrane of composition M2 excited at 631 nm in response to aqueous ethanol solutions (phosphate buffer at pH 6.8); based on data from Fig. S5a.

Figure S6. (a) Absolute changes in the ratiometric signal ($I_{751 nm} / I_{701 nm}$), and (b) in the emission signal at 701 nm and at 751 nm for a membrane of composition M2 excited at 431 nm upon repeated and continuous exposure (0.5 ml/min flow) to aqueous ethanol solutions (phosphate buffer at pH 6.8): $\blacktriangle 1^{st}$ run (0 – 190 min), $\blacksquare 2^{nd}$ run (240 – 400 min), $\blacklozenge 3^{rd}$ run (450 – 600 min); the sensor membrane was continuously flushed with ethanol-free buffer solution between the single runs.