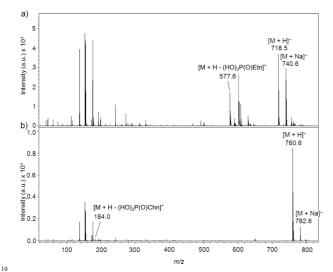
35

45

The Reproducibility of Phospholipid Analyses by MALDI-MSMS: Supporting Information


Catherine J. Pridmore,^a Jackie A. Mosely^{*a} and John M. Sanderson^{*a}

Mass Isolation Windows for MSMS

s **Table S1** Summary of precursor ion isolation windows for MSMS analyses.^a

	$[POPC + H]^+$	$[POPE + H]^+$	$[POPC + Li]^+$	
Manual	± 11	± 11	+11, -5	+5, -5
LIFT				
Automated	±15	± 14	+9, -5	+6, -7
LIFT				
Automated	± 8	n/a	± 8	n/a
CID				
^{<i>a</i>} isolation windows are given in Da.				

MALDI-MS Spectra of POPC and POPE

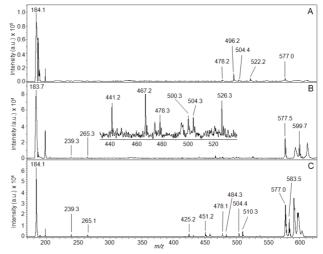


Fig. S1 MALDI-MS spectra of a) POPE b) POPC showing molecular ions and fragments observed. Each sample was prepared (in the absence of lithium) by mixing a solution of the lipid in CHCl₃(1 mg/ml) 1:9 (ν/ν) with a solution of DHB (30 mg/mL) in EtOH/H₂O (50 % ν/ν).

15

20

25

³⁰ Fig. S2 MALDI-MSMS spectra of A) [POPC + H]⁺; B) [POPC + Na]⁺; and C) [POPC + Li]⁺. The samples were prepared by mixing a solution of the lipid in CHCl₃ (1 mg/mL) 1:9 (v/v) with solutions of DHB (30 mg/mL) in EtOH/H₂O (50:50 (v/v)), or NaCl (100 mM) or LiCl (100 mM) in EtOH/H₂O (50:50 (v/v)) respectively.

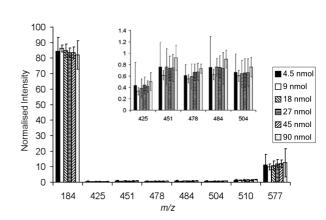
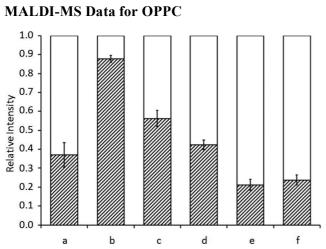



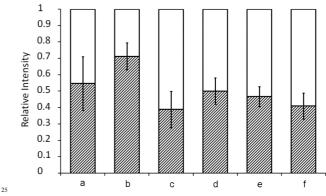
Fig. S3 Normalized intensities of [POPC + Li]⁺ fragment peaks with varying amounts of lithium chloride per target spot (4.5, 9, 18, 27, 45, 90 nmol) and fixed amounts of DHB (0.2 μmol) and lipid (0.2 nmol). Error
⁴⁰ bars represent 2× the standard deviation from 8 repeat scans in each case.

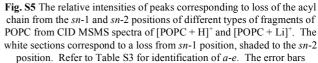
Fig. S4 Relative peak intensities for loss of acyl chain fragments from the *sn*-1 and *sn*-2 positions of OPPC in MALDI-MSMS spectra of [OPPC + s]⁺ and [OPPC + Li]⁺. The white sections correspond to a loss from *sn*-1 position, shaded to the *sn*-2 position. Refer to Table S2 for identification of *a*-*f*. The error bars correspond to 2× the standard deviation of the data.

Table S2 Product ions corresponding to the loss of the acyl chain from10 the *sn*-1 or *sn*-2 positions of OPPC in MALDI-MSMS spectra of [OPPC+ H]⁺ and [OPPC + Li]⁺. The relative intensities of peaks correspondingto the loss of the acyl chains from the *sn*-1 and *sn*-2 positions have beennormalized with respect to one another for each type of fragmentation.

	Parent Ion Fragment ^a		RI, $\mathbf{x} = 1^{b,c}$	RI, $x = 2^{b,c}$
а	$[M + H]^{+}$	$[M + H - R_x CO_2 H]^+$	0.63 ± 0.06	0.45 ± 0.06
b	$[M + H]^{+}$	$[M + H - R_x = C = O]^+$	0.12 ± 0.02	0.88 ± 0.02
с	$[M + H]^{+}$	$[R_xCO]^+$	0.44 ± 0.04	0.56 ± 0.04
d	$[M + Li]^{+}$	$[M + Li - R_x CO_2 Li]^+$	0.58 ± 0.03	0.42 ± 0.03
e	$[M + Li]^{+}$	$[M + Li - R_x CO_2 H]^+$	0.79 ± 0.03	0.21 ± 0.03
f	$[M + Li]^{+}$	$\left[M + Li - (R_x CO_2 H + NMe_3)\right]^+$	0.76 ± 0.03	0.24 ± 0.03

 a x = 1 and x = 2 correspond the *sn*-1 and *sn*-2 positions of the lipid ¹⁵ respectively.


^b RI = relative intensity.


 $^{\rm c}$ The error is calculated as 2× the standard deviation from 24 spectra.

CID MSMS Data

²⁰ Table S3 Product ions corresponding to the loss of the acyl chain from the *sn*-1 or *sn*-2 positions of POPC in the CID MSMS spectra of [POPC + H]⁺ and [POPC + Li]⁺. Entries *a-e* correspond to the data in Fig. S5.

	Parent Ion	Fragment
а	$[POPC + H]^+$	$[M + H - R_x CO_2 H]$
b	$[POPC + H]^+$	$[M + H - R_x = C = O]$
с	$[POPC + Li]^+$	$[R_xCO]$
d	$[POPC + Li]^+$	$[M + Li - (R_x CO_2 H + NMe_3)]$
e	$[POPC + Li]^+$	$[M + Li - R_x CO_2 Li]$

correspond to two times the standard deviation of the data from 25 repeat

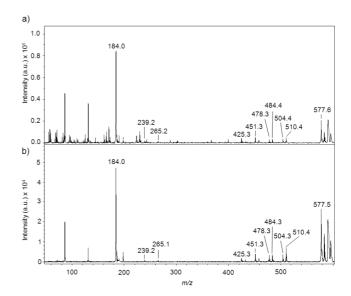


Fig. S6 CID (a) and LIFT (b) spectra of [POPC + Li]⁺. Ion masses are identified in Table 3 of the main paper.

Notes and references

30

^a Department of Chemistry, Durham University, Durham, DH1 3LE, UK. 40 Fax: +44 (0)191 3844737; Tel: +44 (0)191 3342107; E-mail:

j.m.sanderson@durham.ac.uk; jackie.mosely@durham.ac.uk