Electronic supporting information

Development of octadecyl-functionalized-nanotubular

TiO₂/Ti wire solid-phase microextraction fiber

Chunyan Chen, Shaolei Yang, Di Pan, Yiming Long, Zhihong Yan, Qingyun Cai^{*}, Shouzhuo Yao^{*}

State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China

^{*} Corresponding authors. Tel.: +86-731-88821968 (S. Yao); E-mail: szyao@hnu.edu.cn (S. Yao), qycai0001@hnu.edu.cn (Q. Cai)

2. Experimental

2.2. Instrumentation

Table S1 The excitation and emission wavelength program used for determination of PAHs.

PAHs	Time (min)	λ_{ex} (nm)	λ_{em} (nm)
Flu	0	260	340
FlA	15	289	462
Pyr	17.5	320	380
BaA, BbF, BkF	21	294	430

3. Results and discussion

3.1. Characterization of the SPME fiber

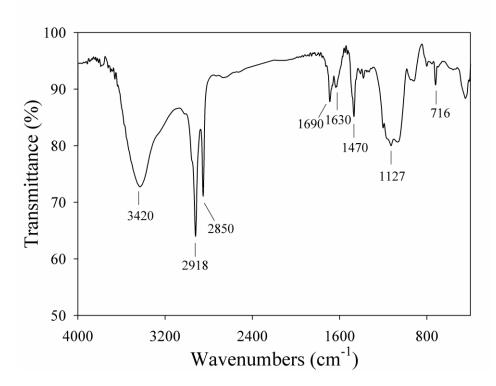


Fig.S1. FTIR absorption spectrum of the sol-gel coating.

3.2. Performance of the SPME fiber

3.2.2. Thermal stability

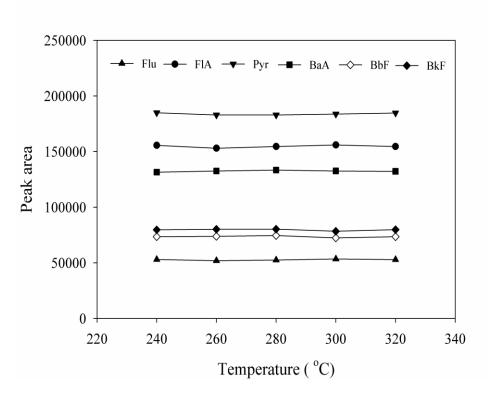


Fig.S2. The thermal stability of the SPME fiber. The extraction capability toward PAHs after the SPME fiber was heated at different temperatures. Experiment conditions: extraction time, 60 min; desorption solvent, acetonitrile; desorption time, 20 min. Concentrations of Flu, FlA, Pyr, BaA, BbF and BkF are 1.8, 10.0, 5.0, 1.8, 1.8, 0.5 ng mL⁻¹, respectively.

3.4. Optimization of SPME

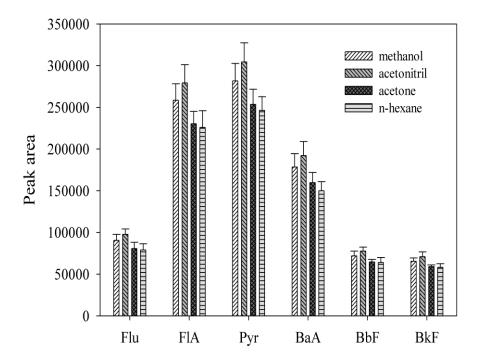


Fig.S3. The effects of desorption solvents on the extraction efficiency of the proposed fiber. Experiment conditions: extraction time, 60 min; salt addition, 10% (w/v); desorption time, 20 min. Desorption solvent volume (500 μ L) was concentrated to 100 μ L by N₂. Spiked concentration: Flu, 0.38 ng mL⁻¹; FlA, 2.0 ng mL⁻¹; Pyr, 1.0 ng mL⁻¹; BaA, 0.38 ng mL⁻¹; BbF, 0.38 ng mL⁻¹; BkF, 0.10 ng mL⁻¹.

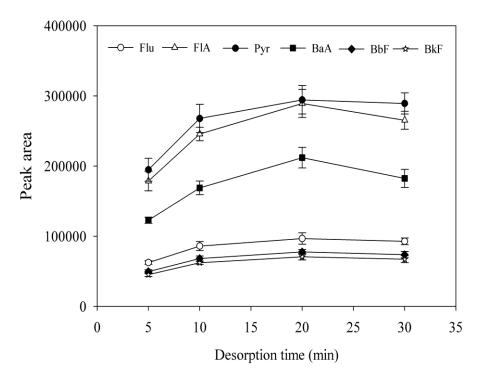


Fig.S4. The effects of desorption time on the extraction efficiency of the proposed fiber. Experiment conditions: extraction time, 60 min; salt addition, 10% (w/v); desorption solvent, acetonitril. Desorption solvent volume (500 μ L) was concentrated to 100 μ L by N₂. Spiked concentration: Flu, 0.38 ng mL⁻¹; FlA, 2.0 ng mL⁻¹; Pyr, 1.0 ng mL⁻¹; BaA, 0.38 ng mL⁻¹; BbF, 0.38 ng mL⁻¹; BkF, 0.10 ng mL⁻¹.

3.5. Analytical performance and application

Table S2 Analytical results for the determination of PAHs in real water samples (n = 3).

	Detected				
Compounds	concentrations	RSD	Spiked concentrations	Recovery	RSD
	(no spiking)	(%)	(µg L ⁻¹)	(%)	(%)
	$(\mu g L^{-1})$				
Flu	0.053	4.8	0.38	92.6	6.1
FlA	n.d. ^a	-	2.0	101.8	7.3
Pyr	n.d.	-	1.0	90.7	3.6
BaA	n.d.	-	0.38	97.2	9.4
BbF	n.d.	-	0.38	88.4	5.8
BkF	n.d.	-	0.1	85.3	6.3

^a n.d.: not detected.