Highly sensitive and selective fluorescent chemosensor for Ni²⁺ based on a new poly(arylene ether) with terpyridine substituent groups

Supplementary Data

4-[3,5-di(4'-fuluorophenyl)-4H-1,2,4-trizole-4-yl]-2,2':6',2''-terpyridines (3)

The mixture of 1,4-difluoride-1,4-bis(4'-fluorophenyl)-2,3-diaza-1,3-butadiene (1) (2.496g, 8 mmol), 4'-amine-2,2':6',2"-terpyridines (2) (2.352 g, 8 mmol), and 40 mL of N,N-dimethylaniline was stirred at 135 °C in a nitrogen atmosphere for 12 h. After reaction was completely promoted, 120 mL o f 2N HCl(aq) was added and the mixture was stirred for another 0.5 h. The solids were filtered, dried, and then purified by crystallization from ethanol to give white solid (3). Yield: 48.2%. M.p.: 284-286 °C. GC-MS (EI-m/z)[M]⁺: calcd for $C_{35}H_{22}F_2N_6$, 564; Found 565.

FTIR (KBr): 1520 cm⁻¹(C=N stretch), 1107 cm⁻¹ (C-F stretch).

¹H NMR (400 MHz, CDCl₃, δ, ppm): 7.05 (4H), 7.29 (4H), 7.37 (4H), 7.89 (4H), 8.68 (4H).

Elemental analysis: calcd for C₃₅H₂₂F₂N₆: C 74.46 %; H 3.93%; N 14.89%; found: C 73.83%; H 3.86%; N 14.67%.

Preparation of polymer

A 25 mL three-necked round-bottomed flask equipped with an argon inlet, a magnetic stirrer, a Dean-Stark trap, and a condenser was flushed with argon and then charged with biphenol monomer **4** (0.3521 g, 1 mmol), K₂CO₃ (0.26 g), DMAc (4 mL), and toluene (8 mL). The reaction mixture was stirred at reflux under argon for 1.5 h to azeotrope off the resulting water with toluene. The toluene was then removed, and the reaction mixture was cooled. After cooling, 0.5642 g (1 mmol) of **3** was added. The mixture was heated to 170 °C and kept at low reflux until a very viscous solution was obtained. After cooling, the mixture was diluted with 2 mL of DMAc and poured into 150 mL of methanol to precipitate out the polymer. The resulting polymer was washed with hot water many times to remove inorganic salts and DMAc. Finally, the result-ing polymer was collected by filtration and dried at 80 °C in avacuum for 12 h. The weight-average molecular weights (M_w) and number-average molecular weights (M_n) of PAET were recorded in 8018 and 6692, relative to polystyrene standards. Yield: 88.7%. FT-IR: 1519 cm-1 (C=N stretch), 1227 cm⁻¹

(C–O stretch), 3058 cm^{-1} (C–H stretch).

Elemental analysis: calcd for C₅₈H₃₇N₈O₂: C 79.34 %; H 4.25%; N 12.76%; found: C 79.29%; H 4.20%; N 12.70%.

Preparation of polymer solutions

PAET (4.4 mg) was dissolved in 5 mL DMF to afford the stock solution with the concentration of

Fig. S1 ¹H NMR spectra of compound 1

Fig. S2 ¹³C NMR spectra of compound 1

Fig. S3 ¹H NMR spectra of compound 2

Fig. S4 ¹H NMR spectra of compound 2

Fig. S5 GC-MS spectra of compound 3

Fig. S6 ¹H NMR spectra of compound 3

Fig. S7 ¹H NMR spectra of compound 4

Fig. S8 13 C NMR spectra of compound 4

Fig. S9 ¹H NMR spectra of PAET

Fig. S10 FTIR spectra of compound 1, 2 and 3.

Fig. S11 FTIR spectra of compound 4.

Fig. S12 FTIR spectra of PAET

Fig.S13 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Al³⁺. Excitation wavelength (nm): 288.

Fig.S14 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Ba²⁺. Excitation wavelength (nm): 288.

Fig.S15 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Ca²⁺. Excitation wavelength (nm): 288.

Fig.S16 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Cd²⁺. Excitation wavelength (nm): 288.

Fig.S17 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Cr³⁺. Excitation wavelength (nm): 288.

Fig.S18 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Cu²⁺. Excitation wavelength (nm): 288.

Fig.S19 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Fe²⁺. Excitation wavelength (nm): 288.

Fig.S20 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Fe³⁺. Excitation wavelength (nm): 288.

Fig.S21 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Hg²⁺. Excitation wavelength (nm): 288.

Fig.S22 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of K⁺. Excitation wavelength (nm): 288.

Fig.S23 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Mg²⁺. Excitation wavelength (nm): 288.

Fig.S24 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Mn²⁺. Excitation wavelength (nm): 288.

Fig.S25 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Na²⁺. Excitation wavelength (nm): 288.

Fig.S26 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Pb²⁺. Excitation wavelength (nm): 288.

Fig.S27 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Ag²⁺. Excitation wavelength (nm): 288.

Fig.S28 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Co²⁺. Excitation wavelength (nm): 288.

Fig.S29 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different amounts of Zn²⁺. Excitation wavelength (nm): 288.

Fig.S30 Fluorescence emission of **PAET** (1 μ M) in DMF in the presence of different metal ions (2×10⁻⁶ mol L⁻¹). Excitation wavelength (nm): 288.