Novel Triazole-Based Fluorescent Probe for Pd²⁺ in Aqueous

Solutions: Design, Theoretical Calculations and Imaging

Ji-Ting Hou, Kun Li,* Kang-Kang Yu, Mei-Zhen Ao, Xin Wang, and Xiao-Qi Yu* E-mail: kli@scu.edu.cn; xqyu@scu.edu.cn

Figure S1	2
Figure S2	2
Figure S3	3
Figure S4	3
Figure S5	4
Figure S6	4
Figure S7	5
Figure S8	5
Figure S9	6
Figure S10	6
Figure S11	7
Figure S12	7
Figure S13	8
Table S1	8
Table S2	8
NMR and HRMS copies of various compounds	9-23

Figure S1 Nonlinear least square analysis of PS-1 and Pd²⁺.

Figure S2 Normalized response of fluorescence signal to changing Pd^{2+} concentrations in the PBS buffer (10 mM, pH = 7.2, containing 0.5% DMF). ($\lambda_{ex} = 410$ nm, $\lambda_{em} = 491$ nm).

Figure S3 Time-dependent fluorescence intensity changes at 491 nm of PS-1 (5 μ M) with Pd²⁺ (5 μ M)

Figure S4 pH titration of PS-1 (5 μ M) with or without Pd²⁺ (50 μ M) during pH 3.0-11.0.

Figure S5 The job plot of a 1:1 complex of PS-1 with Pd^{2+} .

Figure S7 Fluorescence spectral changes of PS-1-Pd²⁺ solution upon addition of an excess amount of S^{2-} ion.

Figure S8 Fluorescent spectra of compound **PS-1** (5 μ M) upon addition of 10 equiv metal ions in PBS buffer (10 mM, pH = 7.2, containing 0.5% DMF). (λ_{ex} =410 nm, slit = 3.0 nm/3.0 nm)

Figure S9 Fluorescence response of **PS-1** (50 μ M) to various metal ions (10 equiv) in the presence of Pd²⁺ (10 equiv) PBS buffer (10 mM, pH = 7.2, containing 0.5% DMF). (λ_{ex} =410 nm, slit = 3.0 nm/3.0 nm).

Figure S10 Partial ¹H NMR spectra of **PS-1** in the absence or presence of 3 equiv Pd^{2+} in DMSO-*d*₆ (Alkyl area). (top : PS-1 with Pd^{2+} ; bottom: PS-1)

Figure S11 Fluorescent spectra of compound **PS-2** (5 μ M) upon addition of 10 equiv metal ions in PBS buffer (10 mM, pH = 7.2, containing 0.5% DMF). (λ_{ex} =410 nm, slit = 3.0 nm/3.0 nm)

Figure S12 Fluorescent spectra of compound **PS-3** (5 μ M) upon addition of 10 equiv metal ions in PBS buffer (10 mM, pH = 7.2, containing 0.5% DMF). (λ_{ex} =410 nm, slit = 3.0 nm/3.0 nm)

Figure S13 Effects of PS-1 at varied concentrations on the viability of Hela cells. The results are the mean standard deviation of three separate measurements.

Species	$\Phi_{ m F}$
PS-1	0.077
PS-1 -Pd ²⁺	0.015
PS-2	0.045
PS-2- Pd ²⁺	0.039
PS-3	0.021
PS-3- Pd ²⁺	0.017

Table S1 Quantum	n yields of PS-1/2/3	with or without Pd^{2+} .
------------------	----------------------	-----------------------------

	Bond lengths (Å)		
Bond	PS-1-Pd	PS-2-Pd	PS-3-Pd
Pd-N1	2.016	2.011	4.267
Pd-N2	2.871	2.946	2.918
Pd-N3	3.442	2.064	3.525
Pd-N4	3.287	2.965	3.433
Pd-C1	2.534	4.059	2.702
Pd-C2	2.181	4.053	2.23
Pd-O1	4.207	4.066	2.095
Pd-N5	2.095		3.515
Pd-O2	3.166		2.069

Table S2 B3LYP optimized bond distances (Å) of PS-1/2/3 with Pd²⁺.

¹H-NMR Spectrum of A-1 in CDCl₃ (400 MHz):

¹H-NMR Spectrum of **C-2** in CDCl₃ (400 MHz):

¹H-NMR Spectrum of **PS-1** in DMSO- d_6 (400 MHz):

¹H-NMR Spectrum of **PS-2** in DMSO- d_6 (400 MHz):

13C-NMR Spectrum of **PS-2** in DMSO-d6 (100 MHz):

¹H-NMR Spectrum of **A-2** in CDCl₃ (400 MHz):

¹H-NMR Spectrum of **PS-3** in CDCl₃ (400 MHz):

Electronic Supplementary Material (ESI) for Analyst This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

HRMS spectra of C-2

HRMS spectra of **PS-1**

HRMS spectra of **PS-2**

HRMS spectra of PS-3

