Supporting information

Highly Sensitive and Selective Detection of Silver (I) in Aqueous Solution with Silver(I)-specific DNA and Sybr Green I

Qing Yang,^{a,b} Fan Li, ^a Yan Huang,^a Hui Xu,^{*c} Linsheng Tang,^{*b} Lihua Wang,^a Chunhai Fan^a

Experimental Section

SG (10000×) was purchased from invitrogen inc. When in use, it was diluted to $250 \times$ with DMSO, then to $10 \times (1.96 \times 10^{-6} \text{ M})$ with water to make a stock solution. 1.625×10^{-8} M SSO was first incubated for 15 min with different amount of Ag⁺ in 10 µL of 100 mM MOPS buffer containing 500 mM NaNO₃, pH 6.90 and one amount of MilliQ–H₂O to 100µL reaction solution. Then 5 µLof 10×SG was added to the solution. After incubating for 2 min,the mixture was added one amount MilliQ–H₂O to 800µL detection solution and used for the fluorescence study at ex497nm.

To study the quenching of Ag^+ , Cu^{2+} and Hg^{2+} to SG, 2 µL $Ag^+(10 \text{ mM})$, $Cu^{2+}(10 \text{ mM})$ and $Hg^{2+}(10 \text{ mM})$ were respectively added into 10 µL SG(100×) for fluorescence study. The fluorescence spectra were shown in Fig. S1, indicating that metal ions such as Ag^+ , Cu^{2+} and Hg^{2+} could quench the fluorescence of SG.

Fig. S1 The quenching of Ag^+ , Cu^{2+} and Hg^{2+} to SG

We used SG-SSO as a probe and illustrated the formation of Ag^+ -hairpin structure by measuring fluorescence intensity at 530 nm every minute. As shown in Fig. S2, the Ag^+ -hairpin structure forms immediately once the silver ion is added.

Fig. S2 Fluorescence intensity change against time after adding Ag⁺ into SG–SSO.

Fig. S3 The fluorescence spectra of solutions containing SSO with different concentration of $Ag^+(0, 1, 5, 10, 30, 50, 80, 100, 500 \text{ nM})$ [SSO] = 1.625×10^{-8} M and [SG]= 1.225×10^{-7} M. A buffer of 100 mM MOPS, 500 mM NaNO₃, pH 6.90 was used.

Fig. S4 The fluorescence spectra of SSO in the absence or presence of 500 nM Ag⁺, 20 mM K⁺, 50 mM Na⁺, 100 mM Li⁺, 10 mM Ca²⁺, 10 mM Mg²⁺, 100 μ M Cu²⁺, 100 μ M Cd²⁺, 100 μ M Pb²⁺, 100 μ M Hg²⁺, respectively. [SSO]=1.625×10⁻⁸ M and [SG]= 1.225×10⁻⁷ M. Mixed sample (K⁺, Na⁺, Li⁺, Ca²⁺, Mg²⁺, Cu²⁺, Zn²⁺, Cd²⁺ and Pb²⁺, each 1 μ M) and real sample (river water) in the absence or presence of Ag⁺ (500 nM) were detected.

Table S1 Comparison between the current method and other methods by using

Methods	Linear range	LOD	Ref.
A graphene-based fluorescent nanoprobe for silver(I) ions	Not indicated	5 nM	a
Un-labeled C-rich ssDNA probe and controlled assembly of	10 to 500 nM	1.3 nM	b
MWCNTs			
Oligonucleotide-immobilized oscillator	Not indicated	10 nM	с
Oligonucleotide-based fluorogenic probe	50 to 700 nM	32 nM	d
Nucleic acid functionalized CdSe/ZnS quantum dots	Not indicated	1 µM	e
DNA SWCNT-based fluorescent sensor	0–150 nm	1 nM	f
Light scattering technique of DNA-functionalized AuNPs	200-9000 nM	50 nM	g
Silver(I)-specific DNA and Sybr Green I	1nM to 100 nM	1nM	Current
			work

$C-Ag^+-C$ interaction

a Y. Q. Wen, F. F. Xing, S. J. He, S. P. Song, L. H. Wang, Y. T. Long, D. Li and C. H. Fan, *Chem. Commun.*, 2010, **46**, 2596.

b G. P. Yan, Y. H. Wang, X. X. He, K. M. Wang, J. Su, Z. F. Chen and Z. H. Qing, *Talanta*, 2012, **94**, 178.

c A. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto and Y. Tanaka, *Chem. Commun.*, 2008, **39**, 4825.

d Y. H. Lin and W. L. Tseng, Chem. Commun., 2009, 6619.

e R. Freeman, T. Finder and Itamar Willner, Angew. Chem., 2009, 121, 7958.

f C. Zhao, K. G. Qu, Y. J. Song, C. Xu, J. S. Ren and X. G. Qu, Chem. Eur. J., 2010, 16, 8147.

g D. Q. Feng, G. L. Liu, W. J. Zheng, J. Liu, T. F. Chen and D. Li, Chem. Commun., 2011, 47, 8557.