Supporting Information

Simple pyridyl-salicylimine-based fluorescence "turn-on" sensors for distinct detections of Zn²⁺, Al³⁺ and OH⁻ ions in mixed-aqueous media

Muthaiah Shellaiah, Yen-Hsing Wu and Hong-Cheu Lin*

Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30049, Taiwan (ROC)

*Correspondence should be addressed to

E-mail: <u>linhc@mail.nctu.edu.tw</u>

Fax: +8863-5724727; Tel: +8863-5712121 ext.55305

Table contents:

Experimental section (S2-S3)

¹H NMR, ¹³C NMR and mass (FAB) scanned spectra of F1, F2 and F3 (S3-S8)

PL spectral responses of F1, F2 and F3 as a function of pH (S8)

Fluorescence and time resolved photoluminescence spectra (TRPL) of F1, F2 and F3 at acidic, neutral and basic pHs (2, 7 and 12) (S9-S10)

Computation analysis of HOMO-LUMO of F1, F2 and F3 (Semi empirical method) (S11)

Sensor responses, of F1, F2 and F3 in CH₃CN/H₂O (3/7) towards Al³⁺ ions in H₂O (S12)

UV-Vis titrations of F1 and F2 towards Zn²⁺ ions (S13)

UV-Vis titrations of F1, F2 and F3 in CH₃CN/H₂O (6/4 and 3/7) towards Al³⁺ ions (S14)

Fluorescence spectra and histograms of sensor responses of F1, F2 and F3 CH_3CN/H_2O (3/7) towards Al^{3+} ions in H_2O (S15-S16)

Comparison of relative fluorescence intensity changes of F1, F2, and F3 in CH₃CN/H₂O (6/4 and 3/7) towards Zn^{2+} , Al^{3+} and OH⁻ ions in H₂O (S17)

Fluorescence and UV-Vis titrations and histograms of F1, F2 and F3 towards OH⁻ ions (S18-S20)

Stoichiometry calculation of F1, F2 and F3 to Zn²⁺ and Al³⁺ ions (S21)

¹³C NMR spectral changes towards sensor responses of F1, F2 and F3 (S22-S29)

Mass (FAB) spectral changes towards sensor responses of F1, F2 and F3 (S30-S33)

Sensor reversibilities of F1+Zn²⁺ and F2+Zn²⁺ (S34)

Detection limits (LODs) calculations of F1, F2 and F3 towards Zn²⁺, Al³⁺ and OH⁻ ions (S35-S36)

¹³C NMR and mass (FAB) spectral changes of ratiometric displacements of F1+Zn²⁺ and F2+Zn²⁺ by Al³⁺ ions (S37-S39)

Response parameter values (a) of metal sensor complexes of F1, F2 and F3 (S40-S41)

TRPL spectra of sensor complexes of F1, F2 and F3 (S42)

Fluorescence spectral responses of F1, F2, F3 and their sensor complexes with respect to water concentration, pH and time/minutes (S43-S45)

¹H NMR, PL titrations LOD calculations and TRPL spectra of F1, F2 and F3 towards Ga³⁺ ions (S46-S49)

TRPL and photophysical properties (Table S1 and S2) of F1, F2, F3 and their sensor responses (S50-S51)

Experimental section

General information

All anhydrous reactions were carried out by standard procedures under nitrogen atmosphere to avoid moisture. The solvents were dried by distillation over appropriate drying agents. Reactions were monitored by TLC plates and column chromatography was generally performed on silica gel. ¹H and ¹³C-NMR were recorded on a 300 MHz spectrometer. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz and relative to TMS (0.00) for ¹H and ¹³C R, (s, d, t, q, m, and br mean single, double, ternary, quadruple, multiple, and broad single, respectively), and d-chloroforms (7.26) & (77.0) were used as references for 1 H and 13 C NMR, respectively. Mass spectra (FAB) were obtained on the respective mass spectrometer. Elemental analysis was carried out by Elemental Vario EL. Absorption and fluorescence spectra were measured on V-670 spectrophotometer and F-4500 fluorescence spectrophotometer, respectively. Fargo Mp-2D melting point apparatus was used to measure the melting ranges of all solid compounds. Identification and purity of the compounds F1, F2 and F3 were characterized by NMR (¹H & ¹³C), Mass (FAB), and melting point measurements. Time-resolved photoluminescence (TRPL) spectra were measured using a home-built single photon counting system. Excitation was performed using a 350 nm diode laser (Picoquant PDL-200, 50 ps fwhm, 2 MHz). The signals collected at the excitonic emissions of solutions were connected to a timecorrelated single photon counting card (TCSPC, Picoquant Timeharp 200). The emission decay data were analyzed with the biexponential kinetics in which two decay components were derived. The lifetime values (τ_1 and τ_2) and pre-exponential factors (A₁ and A₂) were determined and summarized. 1-14 pH buffers were freshly prepared as per the literature.¹

Sensor titrations

Compounds F1, F2, and F3 were dissolved in CH₃CN/H₂O (6/4 and 3/7) at 1 x 10⁻⁵ M concentration. Li⁺, Ag⁺, K⁺, Na⁺, Cs⁺, Ni²⁺, Fe²⁺, Co²⁺, Zn²⁺, Cd²⁺, Pb²⁺, In³⁺, Ga³⁺, Mg²⁺, Cu²⁺, Cr³⁺, Fe³⁺ and Al³⁺ metal cations were dissolved in water medium at 1x10⁻⁴ M concentration from their respective chloro compounds, and Ag²⁺, Mn²⁺, Eu³⁺, Hg²⁺ and Mg²⁺ were made from AgNO₃, Mn(OAc)₂, Eu(OAc)₃, Hg(OAc)₂ and MgSO₄, respectively, in water medium at 1 x 10⁻⁴ M concentration. (Metal ion mixtures contained all above ions, except Zn²⁺ and Al³⁺ ions). Ethylene diamine tetra acetic acid (EDTA) was dissolved in H₂O at 1x10⁻⁵ M. All OH⁺, BH₄⁻, NO₃⁻, PO₄⁻, ClO₄⁻, F⁻, Cl⁻, Br⁻ and I⁻ anions were dissolved in water medium at 1x10⁻³ M from their respective tetra butyl ammonium salts. (Anion mixtures contained all above ions, except OH⁻ ion).

NMR titrations and mass spectra

1 equiv. of **F1**, **F2** and **F3** in CD₃CN were titrated with 1 equiv. of Zn^{2+} or Al^{3+} in D₂O and also titrated with 1:1 ratiometrically (each 3 equiv.) mixed with Zn^{2+} and Al^{3+} ions in D₂O and those NMR samples were stirred at 70°C for 2 days, after complete evaporation of the solvent it was dried in vacuum at 50°C for 3 hrs. The fine powders obtained were further investigated via Mass (FAB) spectra to confirm the complex formation. Similarly, OH⁻ anion was investigated by titrating 5 equiv. of tetra butyl ammonium hydroxide (TBAOH) in D₂O with 1 equiv. of F1or F2 or F3 in CD₃CN, and because of the hygroscopic nature of TBAOH, the NMR samples were immediately analyzed by mass (FAB) spectra without further drying.

General procedure for the synthesis of F1, F2 and F3

To 1 equiv. of 2-amino pyridyl derivatives [5 g; 53.13 mmol (**F1**) and 46.24 mmol (**F2** and **F3**)] in 50 ml of methanol, 1 equiv. of salicylaldehyde [6.5 g, 53.22 mmol (**F1**) and 5.65 g, 46.26 mmol (**F2** and **F3**)] was added with constant stirring under nitrogen and then refluxed for 12 hrs. The reaction was monitored by TLC. After completion, the reaction mixtures were cooled and the

solvent was evaporated to give the crude products, which were recrystallized from ethanol to afford pure compounds (F1, F2 and F3).

2-((pyridin-2-ylimino)methyl)phenol (F1): Dark yellow solid; 10.11 g; 96% yield; M.P = 65-67 °C; ¹H NMR (300 MHz, CDCl₃) δ : 6.90 – 7.18 (m, 2H), 7.20 – 7.48 (m, 4H), 7.71 (t, *J* = 9.0 Hz, 1H), 8.47 (d, *J* = 6.0 Hz, 1H), 9.40 (s, 1H), 13.44 (s, 1H (-OH)); ¹³C NMR (300 MHz, CDCl₃) δ : 117.16, 118.89, 119.15, 120.50, 133.41, 133.77, 138.40, 148.86, 157.46, 161.77, 164.66; FAB: m/z = 198 (M⁺, 100%). Anal. Calcd for C₁₂H₁₀N₂O: C, 72.71; H, 5.08; N, 14.13. Found: C, 72.54; H, 5.06; N, 14.12.

2-((4-methylpyridin-2-ylimino)methyl)phenol (F2): Bright yellow crystals; 9.62 g; 98% yield; M.P = 102-104°C; ¹H NMR (300 MHz, CDCl₃) δ : 2.37 (s, 3H), 6.90 – 7.12 (m, 4H), 7.35 – 7.46 (m, 2H), 8.33 (d, J = 6.0 Hz, 1H), 9.40 (s, 1H), 13.49 (s, 1H (-OH)); ¹³C NMR (300 MHz, CDCl₃) δ : 20.86, 117.13, 118.91, 119.07, 121.08, 123.55, 133.31, 133.63, 148.47, 149.80, 157.47, 161.77, 164.47; FAB: m/z = 212 (M⁺, 100%). Anal. Calcd for C₁₃H₁₂N₂O: C, 73.56; H, 5.70; N, 13.20. Found: C, 73.50; H, 5.67; N, 13.18.

2-((3-methylpyridin-2-ylimino)methyl)phenol (**F3**): Bright yellow powder; 9.52 g; 97% yield; M.P = 81-83 °C; ¹H NMR (300 MHz, CDCl₃) δ : 2.49 (s, 3H), 6.96 – 7.19 (m, 3H), 7.53 – 7.61 (m, 3H), 8.36 (d, J = 6.0 Hz, 1H), 9.43 (s, 1H), 13.79 (s, 1H (-OH)); ¹³C NMR (300 MHz, CDCl₃) δ : 17.65, 117.17, 119.14, 122.61, 124.71, 128.50, 133.38, 133.76, 139.48, 146.31, 155.79, 162.01, 163.87; FAB: m/z = 212 (M⁺, 100%). Anal. Calcd for C₁₃H₁₂N₂O: C, 73.56; H, 5.70; N, 13.20. Found: C, 73.52; H, 5.68; N, 13.19.

F1: R^1 and $R^2 = H$; **F2**: $R^1 = CH_3$ and $R^2 = H$; **F3**: $R^1 = H$ and $R^2 = CH_3$

Scheme S1 Synthesis of F1, F2 and F3.

References

- (1) R. A. Robinson, R. H. Stokes, "Electrolyte solutions" 2nd ed., rev. 1968, London, Butterworth.
- (2) G. Grynkiewcz, M. Poenie and R. Y. Tsein, J. Biol. Chem., 1985, 260, 3440.
- (3) D. Maity and T. Govindaraju, Chem. Commun., 2012, 48, 1039.

Figure S1 ¹H NMR spectrum of F1.

Figure S2¹³C NMR spectrum of F1.

Fig. S3 Mass (FAB) spectrum of F1.

Fig. S4⁻¹H NMR spectrum of F2.

Fig. S5 13 C NMR spectrum of F2.

Fig. S6 Mass (FAB) spectrum of F2.

Fig. S7¹H NMR spectrum of F3.

Fig. S8 13 C NMR spectrum of F3.

Fig. S9 Mass (FAB) spectrum of F3.

Fig. S10 PL spectral responses of (a) F1, (b) F2, and (c) F3 as function of pHs (0-14).

Fig. S11 PL spectra of F1, F2 and F3 (a, b, and c) at acidic, neutral, and basic pHs (2, 7, and 12).

Fig. S12 Time-resolved fluorescence spectra of F1, F2 and F3 (a, b, and c) at acidic, neutral, and basic pHs (2, 7, and 12); Inset: Photographs of F1, F2 and F3 at acidic, neutral, and basic pHs (2, 7, and 12).

Fig. S13 Computational analysis of HOMO and LUMO levels of F1, F2, F3, F1-phenoxide, F2-phenoxide, and F3-phenoxide ions. (Semi-empirical AM1 method).

Fig. S14 Sensor responses of (a) F1 in CH_3CN/H_2O (3/7; vol/vol), (b) F2 in CH_3CN/H_2O (3/7; vol/vol), and (c) F3 in CH_3CN/H_2O (3/7; vol/vol) towards metal ions in H_2O .

Fig. S15 UV-Vis titrations of (a) **F1** (20 μ M), and (b) **F2** (20 μ M) in CH₃CN/H₂O (6/4; vol/vol) upon the addition of Zn²⁺ (0, 5, 10, 15, 20, 22, 24, 28 and 30 μ M).

Fig. S16 UV-Vis titrations of (a) **F1** (20 μ M), (b) **F2** (20 μ M), and (c) **F3** (20 μ M) in CH₃CN/H₂O (6/4 and 3/7; vol/vol ratios) upon the addition of Al³⁺ (0, 2, 5, 10, 15, 20, 22, 24, 28, 32, 36 and 40 μ M).

Fig. S17 Fluorescence spectral changes of (a) **F1** ($1x10^{-5}$ M) in CH₃CN/H₂O (3/7; vol/vol) (λ_{ex} =344 nm), (b) **F2** ($1x10^{-5}$ M) in CH₃CN/H₂O (3/7; vol/vol) (λ_{ex} =346 nm), and (c) **F3** ($1x10^{-5}$ M) in CH₃CN/H₂O (3/7; vol/vol) (λ_{ex} =343 nm) titrated with 0-60µM of Al³⁺ ions in H₂O (with an equal span of 3 µM). Insets show PL spectral responses of (a) **F1**, (b) **F2** and (c) **F3** as a function of Al³⁺.

Fig. S18 Relative fluorescence intensities of (a) **F1** (20 μ M), (b) **F2** (20 μ M) and (c) **F2** (20 μ M) in CH₃CN/H₂O (3/7; vol/vol) with 60 μ M Al³⁺ in H₂O in the presence of competing metal ions. Black bars; **F1**, **F2**, and **F3** (20 μ M) in CH₃CN/H₂O (3/7; vol/vol) with 60 μ M of stated metal ions in H₂O. Red bars; **F1**, **F2**, and **F3** (20 μ M) CH₃CN/H₂O (3/7; vol/vol) with 60 μ M Al³⁺ + 60 μ M of stated metal ions in H₂O. (120 μ M of Al³⁺ for Al³⁺ effect). (Mix = all metal ions except Zn²⁺ and Al³⁺).

Fig. S19 Comparison of relative fluorescence intensity changes of (a) **F1** in CH₃CN/H₂O (6/4 and 3/7; vol/vol ratios), (b) **F2** in CH₃CN/H₂O (6/4 and 3/7; vol/vol ratios), and (c) **F3** in CH₃CN/H₂O (6/4 and 3/7; vol/vol ratios) towards Zn^{2+} , Al^{3+} and OH⁻ ions in H₂O.

Fig. S20 Fluorescence spectral changes of (a) **F1** (20 μ M) in CH₃CN/H₂O (6/4; vol/vol) (λ_{ex} =346 nm), (b) **F2** (20 μ M) in CH₃CN/H₂O (6/4; vol/vol) (λ_{ex} =344 nm) and (c) **F3**(20 μ M) in CH₃CN/H₂O (6/4; vol/vol) (λ_{ex} =343 nm) titrated with 0-1000 μ M of OH⁻ ion in H₂O (0, 100, 200, 300, 400, 500, 600, 700, 800, 850, 900, 950 and 1000 μ M were plotted for **F1**, and **F2** was plotted with an equal span of 100 μ M). Insets showed PL spectral responses of (a) **F1** and (b) **F2** as a function of OH⁻ ion.

Fig. S21 Relative fluorescence intensities of (a) **F1** (20 μ M), (b) **F2** (20 μ M), and (c) **F3** (20 μ M) in CH₃CN/H₂O (6/4; vol/vol) with 1000 μ M OH⁻ in H₂O in the presence of competing anions. Black bars; **F1** or **F2** (20 μ M) in CH₃CN/H₂O (6/4; vol/vol) with 1000 μ M of stated anions in H₂O. Red bars; **F1** or **F2** (20 μ M) CH₃CN/H₂O (6/4; vol/vol) with 1000 μ M OH⁻ + 1000 μ M of stated anions in H₂O. (for OH⁻ effect 2000 μ M of OH⁻). (Mix = all anions except OH⁻).

Fig. S22 UV-Vis absorption spectral changes of (a) **F1** (b) **F2**, and (c) **F3**, upon the addition of OH⁻ ions (0-1000 μ M with an equal span of 100 μ M).

Fig. S23 Job plots for determination of stoichiometries of (a) $F1 + Zn^{2+}$, (b) $F2 + Zn^{2+}$, (c) $F1 + Al^{3+}$, (d) $F2 + Al^{3+}$, and (e) $F3 + Al^{3+}$; $X_M = [M^{n+}] / [M^{n+}] + [F1 \text{ or } F2 \text{ or } F3]$; for (a), (b) $[M^{n+}] = Zn^{2+}$, and for (c), (d) and (e) $[M^{n+}] = Al^{3+}$. [Note: for (a), (b) stoichiometry calculations based on normalized PL spectral changes of F1 and F2 during the titration of Zn^{2+} , and for (c), (d) and (e) it was calculated from the UV-Vis spectral changes of Al^{3+} titrations with F1, F2 and F3]

 $F1+Zn^{2+} = 1:1$ stoichiometry (ca. 0.506); $F1+Al^{3+} = 1:1$ stoichiometry (ca. 0.500) $F2+Zn^{2+} = 1:1$ stoichiometry (ca. 0.503); $F2+Al^{3+} = 1:1$ stoichiometry (ca. 0.507) and $F3+Al^{3+} = 1:1$ stoichiometry (ca. 0.508)

Fig. S24 ¹³C NMR spectral changes of **F1** (1 equiv.) in CD₃CN with Zn^{2+} (1 equiv.) in D₂O.

Fig. S25 ¹³C NMR spectral changes of **F1** (1 equiv.) in CD₃CN with Al^{3+} (1 equiv.) in D₂O.

Fig. S26 ¹³C NMR spectral changes of F2 (1 equiv.) in CD₃CN with Zn^{2+} (1 equiv.) in D₂O.

Fig. S27 ¹³C NMR spectral changes of F2 (1 equiv.) in CD₃CN with Al^{3+} (1 equiv.) in D₂O.

Fig. S28 ¹³C NMR spectral changes of **F3** (1 equiv.) in CD₃CN with Al^{3+} (1 equiv.) in D₂O.

Fig. S29 ¹³C NMR spectral changes of F1 (1 equiv.) in CD₃CN with OH⁻ (5 equiv.) in D₂O.

Fig. S30 13 C NMR spectral changes of F2 (1 equiv.) in CD₃CN with OH⁻ (5 equiv.) in D₂O.

Fig. S31 ¹³C NMR spectral changes of **F3** (1 equiv.) in CD_3CN with OH^- (5 equiv.) in D_2O .

Fig. S32 Mass (FAB) spectral changes of **F1** (1 equiv.) + Zn^{2+} (1 equiv.).

Fig. S33 Mass (FAB) spectral changes of F1 (1 equiv.) + Al^{3+} (1 equiv.).

Fig. S34. Mass (FAB) spectral changes of **F2** (1 equiv.) + Zn^{2+} (1 equiv.).

Fig. S35 Mass (FAB) spectral changes of F2 (1 equiv.) + Al^{3+} (1 equiv.).

Fig. S36 Mass (FAB) spectral changes of F3 (1 equiv.) + Al^{3+} (1 equiv.).

Fig. S37 Mass (FAB) spectral changes of F1 (1 equiv.) + OH⁻ (5 equiv.).

Fig. S38 Mass (FAB) spectral changes of F2 (1 equiv.) + OH⁻ (5 equiv.).

Fig. S39 Mass (FAB) spectral changes of F3 (1 equiv.) + OH⁻ (5 equiv.).

Fig. S40 UV-Vis absorption spectra (a, b), fluorescence spectra (c, d), and reversible cycles (e, f) for sensor reversibilities of $F1+Zn^{2+}$ and $F2+Zn^{2+}$, respectively.

Fig. S41 Standard deviations and linear fit equations for detection limit calculations of (a) $F1 + Zn^{2+}$, (b) $F2 + Zn^{2+}$, (c) $F1 + Al^{3+}$, (d) $F2 + Al^{3+}$ and (e) $F3 + Al^{3+}$. [Note: Detection limit calculations were based on relative fluorescence intensity changes versus respective metal ion concentrations].

Fig. S42 Detection limits calculations of (a) **F1**+OH⁻, (b) **F2**+OH⁻, and (c) **F3**+OH⁻, respectively, by standard deviations and linear fit equations.

Fig. S43 ¹³C NMR spectral changes of **F1** (1 equiv.) in CD₃CN with $(Al^{3+} + Zn^{2+})$ [(1:1) (each 3 equiv.)] in D₂O.

Fig. S44 ¹³C NMR spectral changes of **F2** (1 equiv.) in CD₃CN with $(Al^{3+} + Zn^{2+})$ [(1:1) (each 3 equiv.)] in D₂O.

Fig. S45 Mass (FAB) spectral changes of F1 (1 equiv.) + $(Al^{3+}+Zn^{2+})$ [(1:1) (each 3 equiv.)].

Fig. S46 Mass (FAB) spectral changes of **F2** (1 equiv.) + $(Al^{3+} + Zn^{2+})$ [(1:1) (each 3 equiv.)].

Response parameter and determination of binding constant^{2, 3}

The response parameter α is defined as the ratio of the free ligand concentration to the initial concentration of the ligand. α defined as the ratio between the free ligand concentration ([L]) and the total concentration of ligand [L_T]:

$$\alpha = \frac{[L]}{[L_T]}$$

 α can be determined from the emission changes in the presence of different concentrations of M^{n+} :

$$\alpha = \frac{[l - l_0]}{[l_1 - l_0]}$$

where I_1 and I_0 are the limiting emission values for $\alpha = 1$ (in the absence of M^{n+}) and $\alpha = 0$ (probe is completely complexes with M^{n+}), respectively.

Tsein equation² to the following equations that can be used in any stoichiometric ratio between the ligand and analyte.

$$[\mathbf{M}^{\mathbf{n}^+}]^{\mathbf{m}} = \frac{1}{n.K} \bullet \frac{1}{[L]_T^{n-1}} \bullet \frac{1-\alpha}{\alpha^n}$$

Where K is complex equilibrium constant, M_mL_n is metal-ligand, L is ligand, [L], $[M^{n+}]$, and $[M_m L_n]$ are the concentrations of respective species.

The stoichiometric ratio of the Zn^{2+} : fluoroionophore is 1:1. So, this equation can be written as

$$[Zn^{2+}] = \frac{1}{2KL} \cdot \frac{1-\alpha}{\alpha^2}$$

The stoichiometric ratio of the Al^{3+} : fluoroionophore is 1:1. So, this equation can be written as

$$[A1^{3+}] = \frac{1}{3KL^2} \bullet \frac{1-\alpha}{\alpha^2}$$

Fig. S47 Response parameter values (α) of (a) **F1** and (b) **F2** as a function of the logarithm of $[Zn^{2^+}]$; (c) **F1**, (d) **F2**, and (e) **F3** as a function of the logarithm of $[Al^{3^+}]$. α is defined as the ratio between the free ligand concentration [L] and the initial concentration [L₀] of ligand.

Fig. S48 Time-resolved fluorescence spectra of [**F1** and **F2** (1 equiv.) + Zn^{2+} (1 equiv.)] (a, b); [**F1**, **F2** and **F3** (1 equiv.) + Al^{3+} (3 equiv.)] (c, d, and e); [**F1** or **F2** (1 equiv.) + ($Al^{3+}+Zn^{2+}$) [(1:1) (each 3 equiv.)] (f, g); and [**F1**, **F2** and **F3** (1 equiv.) + OH⁻ (50 equiv.)] (h, i, and j)

Fig. S49 PL spectral responses of (a) $F1+Zn^{2+}$, $F2+Zn^{2+}$ and $F3+Zn^{2+}$, (b) $F1+Al^{3+}$, $F2+Al^{3+}$ and $F3+Al^{3+}$, and (c) $F1+OH^-$, $F2+OH^-$ and $F3+OH^-$ as a function of time (0-60 minutes).

Fig. S50 PL spectral responses of (a) F1, F2 and F3, (b) $F1+Zn^{2+}$, $F2+Zn^{2+}$ and $F3+Zn^{2+}$, (c) $F1+Al^{3+}$, $F2+Al^{3+}$ and $F3+Al^{3+}$, (d) $F1+OH^-$, $F2+OH^-$ and $F3+OH^-$ as a function of increasing water concentration (0-99%).

Fig. S51 PL spectral responses of (a) $F1+Zn^{2+}$, $F2+Zn^{2+}$ and $F3+Zn^{2+}$, (b) $F1+Al^{3+}$, $F2+Al^{3+}$ and $F3+Al^{3+}$, (c) $F1+OH^-$, $F2+OH^-$ and $F3+OH^-$ as a function of pH (0-14).

Fig. S52 ¹H NMR spectral changes of (a) **F1** (1 equiv.) in CD₃CN (b) **F2** (1 equiv.) in CD₃CN with Ga^{3+} ions (5 equiv.) in D₂O.

Fig. S53 Fluorescence spectral changes of (a) **F1** $(1x10^{-5} \text{ M})$ in CH₃CN/H₂O (6/4; vol/vol) $(\lambda_{ex}=344 \text{ nm})$, (b) **F2** $(1x10^{-5} \text{ M})$ in CH₃CN/H₂O (6/4; vol/vol) $(\lambda_{ex}=346 \text{ nm})$, and (c) **F3** $(1x10^{-5} \text{ M})$ in CH₃CN/H₂O (6/4; vol/vol) $(\lambda_{ex}=343 \text{ nm})$ titrated with 0-60 μ M of Al³⁺ ions in H₂O (0, 20, 40, 60, 80, 100 and 200 μ M were plotted). Insets show PL spectral responses of (a) **F1**, (b) **F2** and (c) **F3** as a function of Ga³⁺.

Fig. S54 Standard deviations and linear fit equations for detection limit calculations of (a) $F1 + Ga^{3+}$, (b) $F2 + Ga^{3+}$ and (c) $F3 + Ga^{3+}$. [Note: Detection limit calculations were based on relative fluorescence intensity changes versus respective metal ion concentrations].

Fig. S55 TRPL spectra of (a) $F1 + Ga^{3+}$, (b) $F2 + Ga^{3+}$ and (c) $F3 + Ga^{3+}$.

Sensor	properties of se	^{a, c} Association	^a Detection	
Complexes	Φ Complexes		Limits	$^{a, d}\tau$ (ns)
		(log K _a)	(LODs/M)	
$F1+Zn^{2+}$	0.281 ^a	7.92	4.22×10^{-7}	4.15
$\mathbf{F1}$ + $\mathbf{A1}^{3+}$	0.291 ^{a, b}	10.96	1.69×10^{-6}	11.97
$[F1+Al^{3+}] + Zn^{2+}$	0.286 ^a	NA	NA	11.78
F1+OH-	0.220 ^a	NA	2.79x10 ⁻⁵	3.95
$F1+Ga^{3+}$	0.072	NA	4.73x10 ⁻⁶	2.65
$F2+Zn^{2+}$	0.196 ^a	7.76	4.89×10^{-7}	3.83
F2 +Al ³⁺	0.221 ^{a, b}	11.64	1.42×10^{-6}	11.52
$[F2+Al^{3+}] + Zn^{2+}$	0.214 ^a	NA	NA	11.47
F2+OH ⁻	0.122 ^a	NA	2.89x10 ⁻⁵	2.28
F2 +Ga ³⁺	0.064	NA	5.82x10 ⁻⁶	1.76
F3 +A1 ³⁺	0.307 ^{a, b}	12.38	1.27×10^{-6}	12.16
F3+OH ⁻	0.171 ^a	NA	2.78x10 ⁻⁵	2.18
F3 +Ga ³⁺	0.076	NA	4.65x10 ⁻⁶	1.54

Table S1	Photophysical	properties of sensor complexes	
I abic 51	1 notophysical	properties of sensor complexes.	

^aCH₃CN/H₂O (6/4), ^bCH₃CN/H₂O (3/7), 9-10 DPA in CH₃CN as a reference standard ($\Phi = 0.9$) and ^c[Zn²⁺] = 1/2K_aL (1- α / α^2) and [Al³⁺] = 1/3K_aL² (1- α / α^3); where L is the ligand and α = ratio between the free ligand concentration [L] and the initial concentration of ligand [L₀], ^dFluorescence lifetimes.

Compound	$\tau_1(ns)$	$\tau_2(ns)$	A ₁ (%)	A ₂ (%)	$\tau_{Avg}(ns)$		
	1.38 ^a	8.93 ^a	89.2ª	10.8 ^a	2.19 ^a		
F1	0.67 ^b	6.18 ^b	93.58 ^b	6.42 ^b	1.02 ^b		
	1.55 ^c	5.91 [°]	27.6°	72.4 ^c	3.85 ^c		
$F1+Zn^{2+}$	2.59	5.58	27.5	72.5	4.15		
$F1+Al^{3+}$	12.44	3.73	5.4	96.6	11.97		
$[F1+Al^{3+}] + Zn^{2+}$	11.68	3.71	6.8	93.2	11.78		
F1+OH ⁻	1.49	4.90	37.2	62.8	3.95		
F1 +Ga ³⁺	1.67	6.72	76.2	23.8	2.65		
	0.91 ^a	13.09 ^a	95.1ª	4.9 ^a	1.51 ^a		
F2	0.71 ^b	7.66 ^b	95.25 ^b	4.75 ^b	1.04 ^b		
	0.29 ^c	6.95°	30.40 ^c	69.6 ^c	4.12 ^c		
$F2+Zn^{2+}$	1.55	4.71	27.6	72.4	3.83		
$F2+Al^{3+}$	12.08	2.28	5.1	94.9	11.52		
$[F2+Al^{3+}] + Zn^{2+}$	12.00	2.04	4.9	95.1	11.47		
F2+OH⁻	0.99	5.74	44.6	55.4	2.28		
$F2+Ga^{3+}$	0.78	12.67	87.3	12.7	1.76		
	0.88^{a}	13.48 ^a	98.1 ^a	1.9 ^a	1.35 ^a		
F3	0.70 ^b	9.65 ^b	97.01 ^b	2.92 ^b	0.96 ^b		
	0.51 ^c	6.68 ^c	27.72 ^c	72.28 ^c	3.59 ^c		
F3 +Al ³⁺	14.07	5.95	4.1	95.9	12.16		
F3+OH ⁻	1.39	4.24	34.6	65.4	2.18		
F3 +Ga ³⁺	0.92	11.56	85.6	14.4	1.54		
a pH=7, b pH=2 and c pH=12.							

Table S2 TRPL decay constants of F1, F2, and F3 in the presence of Zn^{2+} , Al^{3+} and OH^{-} ions.