Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2014

Supplementary data

Title: Combined use of quantitative ED-EPMA, Raman microspectrometry, and ATR-FTIR imaging techniques for the analysis of individual particles

Authors: Hae-Jin Jung¹, Hyo-Jin Eom¹, Hyun-Woo Kang¹, Myriam Moreau², Sophie Sobanska², and Chul-Un Ro^{1,*}

¹ Department of Chemistry, Inha University, Yonghyun Dong, Nam Gu, 402-751, Incheon, South Korea

² Laboratoire de Spectrochimie Infrarouge et Raman, UMR CNRS 8516, Université de Lille 1, Bât. C5, 59655 Villeneuve d'Ascq Cedex, France

A summary of the supporting information:

Tables S1 and Figures S1-S13

Table S1. Raman and ATR-FTI	R peaks of observed che	emical species.
-----------------------------	-------------------------	-----------------

Chemical species	Raman and IR peaks (in cm ⁻¹)[ref.]	
Anhydrite	Raman peaks [1]	415, 497, 608, 626, 675, 1016, 1111, 1128, 1160
	ATR-FTIR peaks [2]	1133, 1096, 1016
Gypsum	Raman peaks [3]	415, 494, 620, 670, 1008, 1136
	ATR-FTIR peaks [2]	3505, 3400, 1682, 1618, 1104, 1004
Calcite	Raman peaks [4]	282, 713, 1087, 1437, 1748
	ATR-FTIR peaks [2]	1792, 1392, 866, 709
Quartz	Raman peaks [5]	128, 206, 264, 355, 394, 401, 464, 697, 807, 1161
	ATR-FTIR peaks [2]	1162, 1057, 796, 777
Sodium sulfate	Raman peaks [6]	450, 466, 620, 632, 647, 993, 1101, 1131, 1152
	ATR-FTIR peaks [7]	1102
Sodium nitrate	Raman peaks [8]	724, 1068, 1385
	IR peaks [9]	1789, 1349, 834
K-feldspar	Raman peaks [10]	256, 265, 286, 332, 373, 403, 452, 475, 513, 585, 651, 749, 813, 993, 1124, 1137
	ATR-FTIR peaks [2]	1133, 1048, 1006, 771, 727

References

1. Ma, Y.; Zhou, Q.; He, Z.; Li, F.; Yang, K.; Cui, Q.; Zou, G. High-pressure and high-temperature study of the phase transition in anhydrite. *J. Phys.: Condens. Matter.* **2007**, *19*, 425221.

- Jung, H.-J.; Malek, M.A.; Ryu, J.; Kim, B.; Song, Y.-C.; Kim, H.; Ro, C.-U. Speciation of Individual Mineral Particles of Micrometer Size by the Combined Use of Attenuated Total Reflectance-Fourier Transform-Infrared Imaging and Quantitative Energy-Dispersive Electron Probe X-ray Microanalysis Techniques. *Anal. Chem.* 2010, *82*, 6193-6202.
- 3. Knittle, E.; Phillips, W.; Williams, Q. An infrared and Raman spectroscopic study of gypsum at high pressures. *Phys. Chem. Minerals.* **2001**, *28*, 630-640.
- 4. Gunasekaran, S.; Anbalagan, G.; Pandi, S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc. 2006, 37, 892-899.
- 5. Kingma, K.; Hemley, R. Raman spectroscopic study of microcrystalline silica. Am. Mineral. 1994, 79, 269-273.
- Dong, J.-L.; Xiao, H.-S.; Zhao, L.-J.; Zhang, Y.-H. Spatially resolved Raman investigation on phase separations of mixed Na₂SO₄/MgSO₄ droplets. *J. Raman Spectrosc.* 2009, 40, 338–343.
- 7. Miller, F. A.; Wilkins, C. H. Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Anal. Chem. 1952, 24, 1253-1294.
- 8. Rousseau, D.; Miller, R.; Leroi, G. Raman spectrum of crystalline sodium nitrate. J. Chem. Phys. 1968, 48, 3409-3413.
- 9. Ryu, J.; Ro, C.-U. Attenuated total reflectance FT-IR imaging and quantitative energy dispersive-electron probe X-ray microanalysis techniques for single particle analysis of atmospheric aerosol particles. *Anal. Chem.* **2009**, *81*, 6695-6707.
- 10. Freeman, J.; Wang, A.; Kuebler, K.; Jolliff, B.; Haskin, L. CHARACTERIZATION OF NATURAL FELDSPARS BY RAMAN SPECTROSCOPY FOR FUTURE PLANETARY EXPLORATION. *Can. Mineral.* **2008**, *46*, 1477-1500.

Figure S1. (A) Secondary electron image (SEI) from SEM before ATR-FTIR measurement, (B) optical image from Raman spectrometer, (C) ATR-FTIR image at 1100 cm⁻¹, and (D) SEI after ATR-FTIR measurement of the same 12 gypsum particles on Al foil.

Figure S2. (A) SEI from SEM before ATR-FTIR measurement, (B) optical image from Raman spectrometer, (C) ATR-FTIR image at 1390 cm⁻¹, and (D) SEI after ATR-FTIR measurement of the same 15 calcite particles on Ag foil.

Figure S3. (A1) Optical image from Raman spectrometer, (A2) corresponding Raman image, and (A3) SEI of calcite particle #13, respectively, and (B) its X-ray spectrum, (C) Raman spectrum, and (D) ATR-FTIR spectrum.

Figure S4. (A) SEI from SEM before ATR-FTIR measurement, (B) optical image from Raman spectrometer, (C) ATR-FTIR image at 1060 cm⁻¹, and (D) SEI after ATR-FTIR measurement of the same 25 quartz particles on Ag foil.

Figure S5. (A1) Optical image from Raman spectrometer, (A2) corresponding Raman image, and (A3) SEI of quartz particle #15, respectively, and (B) its X-ray spectrum, (C) Raman spectrum, and (D) ATR-FTIR spectrum.

Figure S6. (A) SEI from SEM before ATR-FTIR measurement, (B) optical image from Raman spectrometer, (C) ATR-FTIR image at 1100 cm⁻¹, and (D) SEI after ATR-FTIR measurement of the same 10 sodium sulfate particles on Al foil.

Figure S7. (A1) Optical image from Raman spectrometer, (A2) corresponding Raman image, and (A3) SEI of sodium sulfate particle #2, respectively, and (B) its X-ray spectrum, (C) Raman spectrum, and (D) ATR-FTIR spectrum.

Figure S8. (A) SEI from SEM before ATR-FTIR measurement, (B) optical image from Raman spectrometer, (C) ATR-FTIR image at 1350 cm⁻¹, and (D) SEI after ATR-FTIR measurement of the same 16 sodium nitrate particles on Al foil.

Figure S9. (A1) Optical image from Raman spectrometer, (A2) corresponding Raman image, and (A3) SEI of sodium nitrate particle #12, respectively, and (B) its X-ray spectrum, (C) Raman spectrum, and (D) ATR-FTIR spectrum.

Figure S10. (A) SEI from SEM before ATR-FTIR measurement, (B) optical image from Raman spectrometer, (C) ATR-FTIR image at 1010 cm⁻¹, and (D) SEI after ATR-FTIR measurement of the same 19 K-feldspar particles on Al foil.

Figure S11. (A1) Optical image from Raman spectrometer, (A2) corresponding Raman image, and (A3) SEI of K-feldspar particle #15, respectively, and (B) its X-ray spectrum, (C) Raman spectrum, and (D) ATR-FTIR spectrum.

S14

Figure S12. (A) Optical images from Raman spectrometer (A1), corresponding Raman images ((A2), (A3), and (A4)) of standard anhydrite particles #3 and #4, (B) ATR-FT-IR images ((B1) at 1090 cm⁻¹ and (B2) at 1400cm⁻¹) of the anhydrite particles and (C) X-ray spectrum, (D) Raman spectra, and (E) ATR-FT-IR spectra of particle #4, respectively.

Figure S13. (A1) Optical image from Raman spectrometer, (A2) corresponding Raman image, and (A3) SEI of a gypsum particle (particle #9 in Figure S1) mixed with anhydrite, and (B) its X-ray spectrum, (C) Raman spectra, and (D) ATR-FTIR spectra.

