Supporting information

Functionalized Lanthanide Coordination Polymers Nanoparticles for Selective Sensing of Hydrogen Peroxide in Biological Fluids

Hongliang Tan*, Chanjiao Ma, Qian Li, Li Wang, Fugang Xu, Shouhui Chen, Yonghai Song*

Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P R China

*Corresponding author: E-mail: <u>hltan@jxnu.edu.cn</u> (H. Tan); <u>yhsong@jxnu.edu.cn</u> (Y. Song) Tel/Fax: +86 791 88120861

Figure S1. Typical XRD patterns of coordination polymers Phe/Tb CPNPs (a) and Phe/Tb-CPBA CPNPs (b).

Figure S2. FTIR spectra of pure Phe (a) and Phe/Tb CPNPs (b).

Figure S3. XPS spectra of B1s for Phe/Tb CPNPs and Phe/Tb-CPBA CPNPs (a) and O1s for Phe/Tb CPNPs, Phe/Tb-CPBA CPNPs and Phe/Tb-CPBA CPNPs treated with H₂O₂ (b).

Figure S4. FTIR spectra of (a) Phe/Tb-CPBA CPNPs and (b) Phe/Tb-CPBA CPNPs in the prescent of 200 $\mu M~H_2O_2.$

Figure S5. Absorption spectra of Phe/Tb-CPBA CPNPs in the presence of H_2O_2 with different concentrations.

Figure S6. SEM images of Phe/Tb-CPBA CPNPs (a) and Phe/Tb-CPBA CPNPs treated with H_2O_2 (b).

Figure S7. Changes of the fluorescence intensities of Phe/Tb-CPBA CPNPs at 545 nm with the reaction time in the presence of different concentrations of H_2O_2 (200, 600 and 1000 μ M).

Figure S8. Effects of pH on the fluorescent intensity of Phe/Tb-CPBA CPNPs (a) and Phe/Tb-CPBA CPNPs in the presence of 500 μ M H₂O₂ (b).

	Linear range Detection limit				
Methods / Sensors	(µM)	(µM)	Real samples	Kefs.	
Colorimetry/Fe ₃ O ₄ nanoparticles	5-100	3	no	3	
Colorimetry/photo-Fenton reactions	25-6000 143 no 4				
Electrochemilumine/batch injection analysis	100-4000	10	milk	5	
Electrochemilumine/Graphene-Cu ₂ O	300-7800	20.8	no	6	
Electrochemilumine/Graphene Oxide	5-1500	0.27	human serum and urine	7	
Electrochemilumine/G-quadruplex	0.1-20	N.A.	cancer cells	8	
Fluorescence/ Cationic conjugated polymers	N.A.	0.015	no	9	
Fluorescence/Fenton reaction system	0.02-20	0.005	milk	10	
Fluorescence/BTTA-Eu ³⁺	100-1000	no	no	11	
Fluorescence/Phe/Tb-CPBA CPNPs	6-1000	2	urine	This work	

Table S1. Comparison of various methods for the detection of H_2O_2

Table S2. Determination of H₂O₂ in urine samples.

Samples	Found (µM)	Added (µM)	Detected (µM)	Recovery (%)	RSD (n=3, %)
Urine 1	15.60	0	15.60		1.38
Urine 2	15.60	50	65.53	99.55	7.70
Urine 3	15.60	100	115.96	102.31	4.99
Urine 4	15.60	150	165.39	98.65	3.07

References

- 1. R. Mahalakshmi, S. X. Jesuraja and S. J. Das, Cryst. Res. Technol., 2006, 41, 780-783.
- 2. E. Ramachandran and S. Natarajan, Cryst. Res. Technol., 2007, 42, 617-620.
- 3. H. Wei and E. Wang, Anal. chem., 2008, 80, 2250-2254.
- 4. R. F. P. Nogueira, M. C. Oliveira and W. C. Paterlini, Talanta, 2005, 66, 86-91.
- 5. R. A. Silva, R. H. Montes, E. M. Richter and R. A. Munoz, Food Chem., 2012, 133, 200-204.
- 6. M. Liu, R. Liu and W. Chen, Biosens. Bioelectron., 2013, 45, 206-212.
- 7. J. Bai and X. Jiang, Anal. Chem., 2013, 85, 8095-8101.
- 8. Z.-H. Wang, C.-Y. Lu, J. Liu, J.-J. Xu and H.-Y. Chen, Chem. Commun., 2014, 50, 1178-1180.
- 9. F. He, Y. Tang, M. Yu, S. Wang, Y. Li and D. Zhu, Adv. Funct. Mater., 2006, 16, 91-94.
- 10. M. E. Abbas, W. Luo, L. Zhu, J. Zou and H. Tang, Food Chem., 2010, 120, 327-331.
- 11. M. Liu, Z. Ye, G. Wang and J. Yuan, *Talanta*, 2012, 91, 116-121.