Supporting information

Label-free fluorescent detection of mercury ion based on the regulation of Ag autocatalytic reaction

Haichao Dai ^{a,b}, Pengjuan Ni ^{a,b}, Yujing Sun ^a, Jingting Hu ^{a,b}, Shu Jiang ^{a,b}, Yilin

Wang ^{a,b}, and Zhuang Li ^{a,*}

^aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China ^bUniversity of Chinese Academy of Sciences, Beijing 100039, China

^{*} Corresponding author at:

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. Fax /Tel: +86 431 85262057. E-mail: <u>zli@ciac.ac.cn</u>

Fig. S1 The mass spectrometry of OPDox.

To prove the formation of OPDox, we first purified the obtained OPDox and the steps were as follows: 15.9 mL of 6 mM OPD were diluted into 500.0 mL of PBS buffer (10 mM, pH 6.5), followed by the addition of 8.5 mL of 6 mM AgNO₃. After incubation for 10 min, ethanol and water were removed by rotary evaporation. The crude product was dissolved in ethanol and centrifuged. The final solution was tested by MALDI-TOF-MS and m/z for [M+H]+ was 211.1 and the relative molecular mass was 210.1, which was the same with 2,3-diaminophennazine.

Fig. S2 The ¹H NMR spectrometry of OPDox.

Before the NMR measurement, the crude product was purified by flash chromatography with ethyl acetate to afford 2,3-diaminophennazine (OPDox), and the NMR result was as follows: ¹H NMR (400 MHz, DMSO-d6) δ =7.87-7.90 (2H), 7.52-7.55 (2H), 6.89 (2H), 6.23 (4H).

Fig. S3 (A) The fluorescence graphs of OPD with different metal ions. (B) The selectivity of OPD to different metal ions. Inset: The photograph of OPD solutions with different metal ions. The concentrations for OPD and metal ions were 180 μ M and 96 μ M, respectively.

Fig. S4 Inhibitory effect of (A) Hg^{2+} , (B) Fe^{2+} , (C) Cu^{2+} , (D) Co^{2+} , and (E) Ni^{2+} on the Ag autocatalysis.

Fig. S5 The fluorescence recovery results of the autocatalytic reaction upon the addition of EDTA: (1) OPD in the presence of 96 μ M Ag⁺, (2) (1) with 2 μ M Hg²⁺, (3) (1) with 6 μ M EDTA, and (4) (2) with 6 μ M EDTA.

Fig. S6 Time-dependent fluorescence change of the Ag autocatalysis to different concentrations of Hg^{2+} (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 μ M).