Supplementary information

1. The calibration sample sets and the prediction ones for the recognition

models

For a certain genotype, all the measuring samples are obtained by the PCR amplification three times in the same amplification conditions, in which the two-thirds samples are collected as the calibration sample set and the rest samples as the prediction sample set. For other two genotypes, the measuring samples are also divided into calibration sample sets and prediction ones by the same method. And the detail result is shown in Table S1.

Table S1 The calibration sample sets and the prediction ones of genotypes

Genotype	Number	Sample set	Genotype	Number	Sample set	Genotype	Number	Sample set
10-11	1	prediction	11-11	1	prediction	11-12	1	prediction
10-11	2	calibration	11-11	2	calibration	11-12	2	calibration
10-11	3	calibration	11-11	3	calibration	11-12	3	calibration
10-11	4	prediction	11-11	4	prediction	11-12	4	prediction
10-11	5	calibration	11-11	5	calibration	11-12	5	calibration
10-11	6	calibration	11-11	6	calibration	11-12	6	calibration
10-11	7	prediction	11-11	7	prediction	11-12	7	prediction
10-11	8	calibration	11-11	8	calibration	11-12	8	calibration
10-11	9	calibration	11-11	9	calibration	11-12	9	calibration
10-11	10	prediction	11-11	10	prediction	11-12	10	prediction
10-11	11	calibration	11-11	11	calibration	11-12	11	calibration
10-11	12	calibration	11-11	12	calibration	11-12	12	calibration
10-11	13	prediction	11-11	13	prediction	11-12	13	prediction
10-11	14	calibration	11-11	14	calibration	11-12	14	calibration
10-11	15	calibration	11-11	15	calibration	11-12	15	calibration
10-11	16	prediction	11-11	16	prediction	11-12	16	prediction

10-11,11-11 and 11-12

calibration	17	11-12	calibration	17	11-11	calibration	17	10-11
calibration	18	11-12	calibration	18	11-11	calibration	18	10-11
prediction	19	11-12	prediction	19	11-11	prediction	19	10-11
calibration	20	11-12	calibration	20	11-11	calibration	20	10-11
calibration	21	11-12	calibration	21	11-11	calibration	21	10-11
prediction	22	11-12	prediction	22	11-11	prediction	22	10-11
calibration	23	11-12	calibration	23	11-11	calibration	23	10-11
calibration	24	11-12	calibration	24	11-11	calibration	24	10-11
prediction	25	11-12	prediction	25	11-11	prediction	25	10-11
calibration	26	11-12	calibration	26	11-11	calibration	26	10-11
calibration	27	11-12	calibration	27	11-11	calibration	27	10-11
prediction	28	11-12	prediction	28	11-11	prediction	28	10-11
calibration	29	11-12	calibration	29	11-11	calibration	29	10-11
calibration	30	11-12	calibration	30	11-11	calibration	30	10-11
prediction	31	11-12	prediction	31	11-11	prediction	31	10-11
calibration	32	11-12	calibration	32	11-11	calibration	32	10-11
calibration	33	11-12	calibration	33	11-11	calibration	33	10-11
prediction	34	11-12	prediction	34	11-11	prediction	34	10-11
calibration	35	11-12				calibration	35	10-11
calibration	36	11-12						
prediction	37	11-12						
calibration	38	11-12						

2. The discriminant models of the STR genotype based on PDV

The PDV method aims to find a balance between the separability and the stability with the model parameter λ between 0 and 1. For the discriminant analysis of three genotypes 10-11, 11-11 and 11-12, in order to achieve good between-class separability, at the same time take into account the prediction stability, the model parameter λ is optimized in the range (0, 1). The PDV models with λ -s of 10⁻⁴ and 10⁻⁶ were shown in Figs. S1 and S2, respectively.

Fig. S1 The PDV model for genotypes 10-11, 11-11 and 11-12 with λ of 10^{-4}

("●" the calibration samples and "○" the prediction samples for genotype 10-11, "■" the calibration samples and "□" the prediction samples for the genotype 11-11, and "▼" the calibration samples and "∇" the prediction samples for the genotype 11-12)

Fig. S2 The PDV model for genotypes 10-11, 11-11 and 11-12 with λ of 10^{-6}

("•" the calibration samples and "○" the prediction samples for genotype 10-11, "■" the calibration samples and "□" the prediction samples for the genotype 11-11, and "▼" the calibration samples and "∇" the prediction samples for the genotype 11-12)