Electronic Supplementary Information

Electroanalytical Properties of Cytochrome c with Direct Electron Transfer on

Graphene/Gold Nanoparticles Chitosan Modified Glass Carbon Electrode

Fucheng Li^a, Yan Mo^a, Dan Xiao^{a, b}, Hongyan Yuan^b*, Yong Guo^a*

^aKey laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry and ^bCollege of Chemical Engineering, Sichuan University, Chengdu, 610064 People's Republic of China

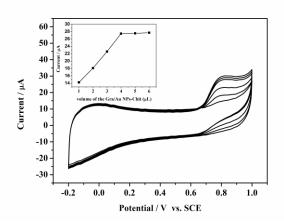


Figure S1 CVs of Cyt c-Gra/Au NPs-Chit/GCE in presence of 200 μ M nitrite with various volume of Gra/Au NPs-Chit: 1, 2, 3, 4, 5 and 6 μ L. Inset: the plot of peak current (I_p) versus volume of Gra/Au NPs-Chit.

With the increasing volume of Gra/Au NPs-Chit dispersion, the catalytic peak current increased and then tended toward a constant value. However, the layer of Gra/Au NPs-Chit will drop from the electrode if it's too thick. So, 4 μ L of 5 mg/mL Gra/Au NPs-Chit dispersion was used for preparation of the nitrite biosensor.

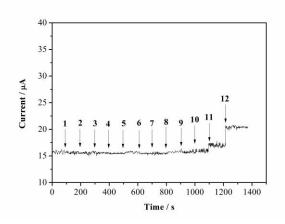


Figure S2 Effect of interference (10mM) on the response of the nitrite sensor: (1) NaCl, (2)NaF, (3)KBr, (4)NH₄NO₃, (5)K₂SO₄, (6)Na₂HPO₄, (7)NaH₂PO₄, (8)CaCl₂, (9)glucose,

(10) fructose, (11) L-ascorbic acid, (12) 200 µM nitrite.