Supporting Information (ESI)[†]

Interaction of a naphthalene based fluorescent probe with Al³⁺: Experimental and computational studies.

Sudipta Das, Debasis Karak, Sisir Lohar, Arnab Banerjee, Animesh Sahana and Debasis Das*

Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India

Fig. S1(a). ¹H NMR spectrum of L in CDCl₃

Fig. S1(b).¹H NMR spectrum (expanded to aromatic region) of \mathbf{L} in CDCl₃

Fig.S2. Mass spectra of **L** $[m/z [M+H]^+ = 278. 20 (92\%); [M+Na]^+ = 300.19(100\%)]$

Fig.S3. FTIR spectrum of L

Fig. S4. UV-Vis spectral changes of **L** (10 μ M in HEPES buffer, 0.1 M, pH 7.4) with gradual addition of 0.5 to 10 times of [Al³⁺] (from top to bottom). Two new peaks developed at 392 nm and 340 nm, indicate binding of Al³⁺ by the **L**.

Fig. S5. Fluorescence spectra of **L** (10 μ M), **L** + Al³⁺ (80 μ M) and **L** (10 μ M) + Mⁿ⁺ (300 μ M), where Mⁿ⁺ = Na⁺, Mg²⁺, Cr³⁺, Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Hg²⁺, Pb²⁺, Cd²⁺, Ag⁺ (λ_{em} : 449 nm, λ_{ex} : 345 nm).

Fig.S6. Fluorescence spectra of **L** and its Al³⁺ complex ($\lambda_{ex} = 345 \text{ nm}$, $\lambda_{em} = 449 \text{ nm}$).

Fig. S7. Eission intensities of **L** (10 μ M) as a function of externally added [Al³⁺] in aqueous – methanol (λ_{em} : 449 nm, λ_{ex} : 345 nm). The detection limit is 4.8×10^{-7} M.

Fig .S8. Mass spectra of $[(L) Al (NO_3) _2(H_2O)]$ complex

Fig. S9. Theoretical IR spectrum of L.

Fig.S10. Experimental IR spectrum of L-Al³⁺ complex

Fig.S11. Theoretical IR spectrum of L-Al³⁺complex

Fig.S12. Effect of pH on the binding efficiency of **L** (10 μ M) towards Al³⁺ (62 × 10⁻⁶ M) in HEPES buffer, 0.1 M, water: methanol = 2:8, v/v) (λ_{em} : 449 nm, λ_{ex} : 345 nm).

Table S1: Relevant bond lengths and angles of the L-Al ³⁺ complex (atom numbering refers to	
Fig. 7 (a) and (b) using the 6-31G basis set.	

Bond angle/°	Bond angle/°	Bond length/A °		
O (14)-Al (19)-N (3) 81.76	O (47)-Al (19)-O (27) 93.14	Al (19)-O (14)(-OCH ₃)1.96		
O (47)-Al (19)-N (3) 86.49	O (28)-Al (19)-O (27) 77.70	Al (19)-N (3) (C=N) 1.97		
O (14)-Al (19)-O (28) 96.62	O (14)-Al (19)-O (23) 84.54	Al (19)-O (47) (-OH) 1.92		
O (28)-Al (19)-O (47) 95.22	O (28)-Al (19)-O (23) 83.97	Al (19)-O (28) (H ₂ O) 1.95		
O (14)-Al (19)-O (27) 97.14	O (47)-Al (19)-O (23) 88.79	Al (19)-O (23) (NO ₃ -) 1.94		
N (3)-Al (19)-O(27) 101.63	N (3)-Al (19)-O (23) 96.66	Al(19)-O(27) (NO ₃ -) 1.88		

Table: S2. Natural Population Analysis (NPA) of L .

Natural Population Analysis

Ato	m	No	Charge	e C	ore	Vale	nce	Rydb	erg	Total
С	1	0.0	7568	1.9991	.6 3	3.9077	5 0.	.01741	5.9	92432
Н	2	0.2	21842	0.0000	0 0).7779	8 0.	.00360	0.	78158

Ν	3	-0.42090	1.99924	5.40924	0.01242	7.42090
С	4	0.08654	1.99879	3.89747	0.01721	5.91346
С	5	-0.20642	1.99897	4.19555	0.01191	6.20642
С	6	0.29303	1.99861	3.69318	0.01518	5.70697
С	7	-0.26534	1.99898	4.25514	0.01122	6.26534
Н	8	0.26207	0.00000	0.73624	0.00169	0.73793
С	9	-0.32196	1.99895	4.31296	0.01004	6.32196
С	10	-0.22711	1.99900	4.21648	0.01162	6.22711
Н	11	0.24429	0.00000	0.75473	0.00098	0.75571
Η	12	0.24341	0.00000	0.75548	0.00112	0.75659
Η	13	0.24288	0.00000	0.75609	0.00102	0.75712
0	14	-0.53598	1.99972	6.53046	0.00579	8.53598
С	15	-0.35352	1.99927	4.34739	0.00686	6.35352
Η	16	0.24188	0.00000	0.75738	0.00075	0.75812
Η	17	0.21881	0.00000	0.77879	0.00240	0.78119
Η	18	0.21665	0.00000	0.78108	0.00227	0.78335
С	19	-0.11821	1.99885	4.10613	0.01323	6.11821
С	20	-0.02377	1.99894	4.01453	0.01029	6.02377
С	21	0.34475	1.99858	3.64146	0.01520	5.65525
С	22	-0.22869	1.99898	4.21937	0.01034	6.22869
С	23	-0.07375	1.99892	4.06376	0.01106	6.07375
С	24	-0.30426	1.99894	4.29392	0.01140	6.30426
С	25	-0.23196	1.99900	4.22144	0.01152	6.23196
Η	26	0.24887	0.00000	0.74936	0.00177	0.75113
С	27	-0.20935	1.99897	4.19971	0.01067	6.20935
С	28	-0.19112	1.99896	4.18133	0.01083	6.19112
Η	29	0.23837	0.00000	0.76030	0.00133	0.76163
С	30	-0.24954	1.99899	4.23895	0.01161	6.24954
Η	31	0.24247	0.00000	0.75650	0.00103	0.75753
Η	32	0.23971	0.00000	0.75900	0.00129	0.76029
Н	33	0.24443	0.00000	0.75433	0.00124	0.75557

* Tota	al *	0.00000	41.97956	103.75673	0.26371	146.00000
H 	36	0.48323	0.00000	0.51498	0.00179	0.51677
0	35	-0.66738	1.99974	6.66303	0.00462	8.66738
Н	34	0.24377	0.00000	0.75523	0.00100	0.75623

Table: S3. Natural Population Analysis (NPA) of L-Al³⁺ complex

Natural Population

Ato	m	No	Charge	e	Core	Va	alence	Ry	dberg		Total
С	1	0.1	7120	1.99	910	3.81	373	0.015	596	5.82	2880
Η	2	0.2	24291	0.00	000	0.75	541	0.001	67	0.7	5709
Ν	3	-0.6	54583	1.99	930	5.63	112	0.015	542	7.6	4583
С	4	0.1	0864	1.99	874	3.87	774	0.014	188	5.89	9136
С	5	0.3	80963	1.99	848	3.67	887	0.013	801	5.6	9037
С	6	-0.2	2959	1.99	894	4.22	099	0.009	966	6.2	2959
С	7	-0.2	27621	1.99	889	4.26	704	0.010)28	6.2	7621
С	8	-0.2	22227	1.99	901	4.21	153	0.011	172	6.2	2227
С	9	-0.1	9689	1.99	902	4.18	630	0.011	158	6.1	9689

Н	10	0.26856	0.00000	0.73052	0.00092	0.73144
Н	11	0.27005	0.00000	0.72910	0.00085	0.72995
Н	12	0.27059	0.00000	0.72858	0.00083	0.72941
Η	13	0.25917	0.00000	0.73982	0.00101	0.74083
0	14	-0.62651	1.99973	6.62117	0.00561	8.62651
С	15	-0.33299	1.99925	4.32702	0.00672	6.33299
Η	16	0.24635	0.00000	0.75259	0.00106	0.75365
Η	17	0.25905	0.00000	0.73953	0.00141	0.74095
Η	18	0.24815	0.00000	0.75049	0.00136	0.75185
Al	19	2.02081	9.99741	0.96905	0.01274	10.97919
N	20	0.69341	1.99963	4.27960	0.02737	6.30659
0	21	-0.46943	1.99982	6.46257	0.00704	8.46943
0	22	-0.25177	1.99979	6.24435	0.00763	8.25177
0	23	-0.65728	1.99982	6.64963	0.00783	8.65728
N	24	0.68135	1.99961	4.28749	0.03154	6.31865
0	25	-0.39963	1.99982	6.39313	0.00668	8.39963
0	26	-0.30136	1.99980	6.29417	0.00739	8.30136
0	27	-0.74290	1.99982	6.73569	0.00739	8.74290
0	28	-1.00720	1.99981	7.00262	0.00477	9.00720
Η	29	0.57053	0.00000	0.42779	0.00168	0.42947
Η	30	0.55969	0.00000	0.43903	0.00129	0.44031
С	31	-0.15065	1.99882	4.14103	0.01080	6.15065
С	32	-0.00582	1.99895	3.99642	0.01045	6.00582
С	33	0.36445	1.99856	3.62345	0.01355	5.63555
С	34	-0.23449	1.99897	4.22535	0.01017	6.23449
С	35	-0.06703	1.99892	4.05724	0.01087	6.06703
С	36	-0.27971	1.99890	4.26893	0.01189	6.27971
С	37	-0.19086	1.99901	4.18011	0.01174	6.19086
Η	38	0.24459	0.00000	0.75421	0.00120	0.75541
С	39	-0.18871	1.99897	4.17870	0.01104	6.18871
С	40	-0.12821	1.99898	4.11858	0.01064	6.12821

Н	41	0.27564	0.00000	0.72336	0.00100	0.72436
С	42	-0.22197	1.99899	4.21127	0.01171	6.22197
Н	43	0.26454	0.00000	0.73458	0.00089	0.73546
Н	44	0.25971	0.00000	0.73917	0.00111	0.74029
Н	45	0.26865	0.00000	0.73026	0.00109	0.73135
Н	46	0.26672	0.00000	0.73243	0.00085	0.73328
0	47	-0.84858	1.99975	6.84459	0.00424	8.84858
Н	48	0.55150	0.00000	0.44466	0.00384	0.44850
* Tot	al *	1.00000	69.97459	159.65103	0.37439	230.00000

Table.S4. Theoretical *vs.* experimental IR data of L and $[L+Al^{3+}]$ complex.

System	Theoretical v/ cm ⁻¹	Experimental v/ cm ⁻¹
L	352,402,492,585,785,862,948,1026,	456, 478, 584, 746, 829, 855, 962, 1021,
	1098,1142,1202,1250,1300,1364,	1091,1135,1153,1245,1289,1320,1337,
	1544,1625,1685,3052,3102,3225,	1354,1489,1542,1589,1612,2841,2945,
	3650.	3036.
$L+Al^{3+}$	410,584,608,698,742,785,962,1112,	458,478,517,584,748,778,969,1021,
	1201,1284,1402,1450,1524,1612,	1092,1171,1110,1136,1190,1209,
	2024,3242,3648,3801	1246,1290,1321,1246,1355,1384,
		1589, 1560, 1619, 2842, 3128.

General method of UV-Vis and fluorescence titration

Path length of the cells used for absorption and emission studies was 1 cm. For UV-Vis and fluorescence titrations, stock solution of **L** (10 μ M) was prepared in methanol water (2:8, v/v). Working solutions were prepared from their respective stock solutions. Fluorescence measurements were performed using 5 nm × 5 nm slit width.

Calculation of Quantum Yield

Fluorescence quantum yields ($\boldsymbol{\Phi}$) were estimated by integrating the area under the fluorescence curves using the equation¹,

Where, **A** was the area under the fluorescence spectral curve, **OD** was optical density of the compound at the excitation wavelength and η was the refractive indices ² of the solvent. Anthracene was used as quantum yield standard (quantum yield is 0.27 in ethanol)³ for measuring the quantum yields at 330 nm.

References

- 1. E. Austin and M. Gouterman, Bioinorg. Chem., 1978, 9, 281.
- 2. F. I. El Dossoki, J. Chin. Chem. Soc. 2007, 54, 1129.
- 3. W. H. Melhuish, J. Phys. Chem., 1961, 65, 229.