Electronic Supplementary Information (ESI)

Ultrasensitive chemiluminescent immunoassay labeled with graphene oxide

Yinhuan Song, Taoyi Yang, Tonghuan Zhang, Nan Jin, Yanjun Zhao, Aiping Fan*

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China. Fax: +86-22-87440581; Tel: +86-22-87440581; E-mail: fanap@tju.edu.cn

Figure S1. (A) FT-IR spectrum of GO. (B) TEM image of GO. (C) XRD pattern of GO. (D) EDX analysis spectrum of GO.

Figure S2. Effects of the reactant conditions on the luminol- H_2O_2 -GO CL system. (A) Effect of H_2O_2 concentration, experimental conditions: luminol (diluted in 0.01 M NaOH), 0.2 mM; EDTA, 0.2 mM; GO, 20 µg/mL. (B) Effect of NaOH concentration, experimental conditions: H_2O_2 , 0.5 M; other experimental conditions were the same as (A). (C) Effect of luminol concentration, experimental conditions: H_2O_2 , 0.5 M; other experimental conditions: H_2O_2 , 0.5 M; luminol (diluted in 0.1 M NaOH); other experimental conditions were the same as (A). (D) Effect of EDTA concentration, experimental conditions: H_2O_2 , 0.5 M; luminol (diluted in 0.1 M NaOH), 0.1 mM; GO, 20 µg/mL.

Figure S3. CL intensity vs. different concentrations of GO. Experimental conditions: H₂O₂, 0.5 M; luminol (diluted in 0.1 M NaOH) 0.1 mM; EDTA, 0.2 mM.

Figure S4. Comparison of catalytic property between new synthesized GO and stored GO. Experimental conditions: H_2O_2 , 0.5 M; luminol (diluted in 0.1 M NaOH), 0.1 mM; EDTA, 0.2 mM.

Figure S5. FT-IR spectrum of Ab₂-GO

Figure S6. CL intensity vs. different concentrations of Ab₂-GO. Experimental conditions: H₂O₂, 0.5 M; luminol (diluted in 0.1 M NaOH) 0.1 mM; EDTA, 0.2 mM.

1		e	
Analytical method	Label	Detection limit	Ref
Electrochemical assay	label-free	3 ng/mL	S1
Electrochemical assay	HRP	25 ng/mL	S2
Amperometry	HRP	1.2 ng/mL	S 3
Potentiometric flow injection analysis	Urease	1200 ng/mL	S4
Voltammetry at intedigitatated array electrode	AP	10 ng/mL	S5
Time-resolved fluorescence assay	AP	0.03 ng/mL	S 6
Fluorescence assay	HRP	2 ng/mL	S7
Flow injection chemiluminescence detection	Au	0.52 ng/mL	S 8
Chemiluminescence detection	GO	1.2 pg/mL	This work
Surface plasmon resonance	Au	30 ng/mL	S9
Atomic absorption spectral assay	Au	8 ng/mL	S 10

Table S1. Comparison of Immunoassay Methods developed for IgG

Human IgG	Human IgG	Recovery (%)	R. S. D.(%)
Added (pg)	Found (pg)		
1	0.98	98.4	2.1
10	9.14	91.4	16.8
100	113.90	113.9	14.8

Table S2. Results of the determination of human IgG in diluted serum using GO based CLIA (n=3)

References

[S1] L. P. Qiu, C. C. Wang, P. Hu, *Talanta*, 2010, 83, 42-47.

[S2] H. Zarei, H. Ghourchian, K. Eskandari, Anal. Biochem, 2012, 421, 446-453.

[S3] Z. J. Wang, Y. H. Yang, J. S. Li, Talanta, 2006, 69, 686-690.

[S4] S. Sole, S. Alegret, F. Cespedes, E. Fabregas, T. Diez-Caballero, *Anal. Chem*, 1998, **70**, 1462-1467.

[S5] R. A. Evangelista, A. Pollak, E. F. Templeton, *Anal.Biochem*, 1991, **197**, 213-224.

[S6] O. Niwa, H. B. Halsall, W. R. Heineman, Anal. Chem, 1993, 65, 1559-1563.

[S7] P. Lin, Y. L. Wang, J. J. Feng, Chinese. J. Chem, 2008, 26, 794-798.

[S8] H. L. Qi, S. G. Li, L. Liang, Spectrochim. Acta. A, 2011, 82, 498-503.

[S9] H. E. Yeritsyan, V. K. Gasparyan, Microchim. Acta, 2012, 176, 117-122.

[S10] Y. F. Tang, C. Jiang, A. H. Liang, Bioproc. Biosyst. Eng, 2011, 34, 471-476.