Selective determination of trace boron based on resonance Rayleigh

scattering energy transfer from nanogold aggregate to complex of boric

acid-azomethine-H

Lingling Ye^a, Guiqing Wen^a, Yanghe Luo^{a,b}, Hua Deng^a, Lening Hu^a, Caiyan Kang^a, Fanggui

Ye^a, Aihui Liang^{*a}, Zhiliang Jiang^{*a}

Figure 1S RRS spectra of the AMH-AuNPs-boron system

(a) 200 ng/ml B-0.17 μ g/m AuNPs -pH 5.6 NH₄AC-HAc; (b) 200 ng/mlB-0.17 μ g/ml AuNPs-7.5×10⁻⁴g/ml azomethine –H; (c) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.17 μ g/ml AuNPs; (d) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH-0.17 μ g/ml AuNPs-200 ng/ml B.

Figure 2S RRS spectra of the AMH-HAuCl₄-boron system

(a) 200 ng/mL B-pH 5.6 NH₄AC-HAc -0.375 μ g/ml HAuCl₄; (b) 200 ng/mL B- 7.5×10⁻⁴g/ml AMH - 0.375 μ g/ml HAuCl₄; (c) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375 μ g/ml HAuCl₄; (c) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375 μ g/ml HAuCl₄: (c) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375 μ g/ml HAuCl₄: (c) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375 μ g/ml HAuCl₄: (c) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375 μ g/ml HAuCl₄: (c) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375 μ g/ml HAuCl₄: (c) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375 μ g/ml HAuCl₄: (c) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375 μ g/ml HAuCl₄: (c) pH 5.6 NH₄AC-HAC -7.5×10⁻⁴g/ml AMH -0.375 μ g/ml HAuCl₄-200 ng/mL B.

Figure 3S RRS spectra of the B-AMH-HAuCl₄ system

(a) 2.5×10^{-2} g/mlpH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375µg/ml HAuCl₄; (b)a+5 ng/ml B; (c) a+40 ng/ml B; (d) a+80 ng/ml B; (e) a+100 ng/ml B; (f) a+150 ng/ml B; (g) a+200 ng/mlB; (h) a+250 ng/mlB; (i) a+300 ng/mlB; (j) a+350 ng/ml B; (k) a+400 ng/ml B; (1) a+450 ng/ml B; (m) a+500 ng/ml B; (n) a+600 ng/ml B.

Figure 4SA Absorption spectra of the B-AMH-AuNP system

Figure 4SB Absorption spectra of the B-AMH- HAuCl₄ system

(a) pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/mL AMH -0.375 μ g/mL HAuCl₄; (b)a+50 ng/mL B; (c) a+75 ng/mL B; (d) a+200 ng/mL B; (e) a+300 ng/mL B; (f) a+400 ng/ml B; (g) a+600 ng/mL B; (h) a+7500 ng/mL B.

(a) 2.5×10⁻²g/mlpH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH; (b)a+10 ng/ml B; (c) a+25 ng/ml B; (d) a+100 ng/ml B; (e) a+200 ng/ml B; (f) a+240 ng/ml B; (g) a+300 ng/ml B.

Figure 6S Fluorescence spectra of the B-AMH–HAuCl₄ system

(a) $0.375\mu g/ml$ HAuCl₄- $2.5 \times 10^{-2} g/mlpH$ 5.6 NH₄AC-HAc - $7.5 \times 10^{-4} g/ml$ AMH; (b)a+1 ng/ml B; (c) a+2.5 ng/ml B; (d) a+5 ng/ml B; (e) a+50 ng/ml B; (f) a+100 ng/ml B; (g) a+200 ng/ml B; (h) a+300 ng/ml B; (i) a+400 ng/ml B; (j)a+500 ng/ml B.

Figure 7S TEM of the boron-AMH- AuNPs system a: pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH-0.375µg/ml HAuCl₄; b: a+250ng/mlH₃BO₃; c: $a{+}500 \text{ng/mlH}_3\text{BO}_3.$

Figure 8S Energy spectra of the boron-AMH- AuNPs system

a: 0.17µg/ml AuNPs; b: pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.17µg/ml AuNPs; c: b+500ng/ml B; d: pH 5.6 NH₄AC-HAc-7.5×10⁻⁴g/ml AMH -0.375µg/ml HAuCl₄; e: d+500ng/ml B.

 $\label{eq:Figure 9S Effect of pH of buffer solution} 200 \ ng/ml \ B \ -2.5 \times 10^{-2} g/ml \ NH_4 AC \ -HAc \ -7.5 \times 10^{-4} g/ml \ AMH \ -0.17 \mu g/ml \ AuNPs$

Figure 10S Effect of concentration of buffer solution

200 ng/ml B–pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.17µg/ml AuNPs

Figure 11S Effect of AMH concentration 200 ng/ml B –2.5×10⁻²g/ml pH 5.6 NH₄AC-HAc - AMH -0.17µg/ml AuNPs;

Figure 12S Effect of AuNPs- concentration 200 ng/mlB–pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH - AuNPs

Figure 13S Effect of AMH and boron reaction time 200 ng/mlB –pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.17 μ g/ml AuNPs

Figure 14S Effect of the time complexes react with AuNPs 200 ng/mlB –pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.17µg/ml AuNPs

Fig. 16S Working curve of the boron-AMH- AuNPs Rayleigh scattering system pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375µg/mL HAuCl₄

Fig. 17S curve of AMH- AuNPs-boron fluorescence system pH 5.6 NH₄AC-HAc -7.5×10⁻⁴g/ml AMH -0.375 μ g/ml HAuCl₄.

Method	Principle	Linear range	Detection	Comments	Ref.
Fluorescence method	Base on the borate ion and alizarin red S using flow injection analysis of aqueous phase reaction	4 -40µgml ⁻¹	0.34µgml⁻ ₁	Stability, suitable for the determination of ultra trace boron in environmental water samples, but the sensitivity is low	11
Quartz crystal resonator	Polymers with boron complexes, polymer film deposited on quartz crystal, the oscillation frequency is directly proportional to the change the concentration of boron	0.3-80µmol/L	0.3µmol/L	complicated operation	44
Ion chromatograph y	Tetrafluoroborate ions change to boron	0.0667–1.0 M		Simple, stable. But the sensitivity was very low	29
voltammetry	alizarin red S (ARS) complexes and the free ligands, adsorbed on the hanging mercury drop	0–500μg L ⁻¹	15μg L-1	Stability, good selectivity, simple	12
ET-AAS	Determination of boron in shrimp by electrothermal atomic absorption spectrometry	-	-	Stability, good selectivity, and applied to real life	9
ICP-AES	(flux) separation approach for the determination of boron in high-purity graphite powder using ICP-OES	-	90 ng g ⁻¹	The content of boron in graphite powder can be detected in less than 1 ppm level	45
Spectrophotom etry	In alkaline solution, lysine with and 1,2 - naphthoquinone	2.16– 43.24µgmL ⁻¹	$2\mu gmL^{-1}$	Fast, low cost, but the sensitivity is low	6

Table 1S Comparison of different analytical methods for B

	sulfonic acid and the -4-			
	reaction of boron,			
	charge transfer occurs			
	Boron, at sub-ppm			
	levels, in U ₃ O ₈ powder			
	and aluminum metal,			
	was determined using		Simple,	
HPLC	complex formation and	0.02-0.5µg	- expensive	47
	dynamically modified		instrument	
	reversedphase high-			
	performance liquid			
	chromatography			
	Rayleigh scattering		The method is	
	resonance energy of		simple, rapid,	
SRET	nanogold transfer to the	5-1000ng/mL	high sensitivity,	This
	complex form by boric		stability,	assay
	acid and AMH		selectivity	
	The Rayleigh scattering		The method is	
	resonance energy of		simple, rapid,	This
SRET	HAuCl ₄ transfer to the	5-600ng/mL	high sensitivity,	assay
	complex form by boric		stability,	
	acid and AMH		selectivity	
	AMH with			
	fluorescence, and after			
	react with boric acid		T_1	
Fluorescence	fluorescence quenching,	0.1000	I ne method is	This
method	gold nanoparticles can	9-1000 ng/mL	simple, rapid,	assay
	enhance the		nigh sensitivity	
	fluorescence quenching			
	efficiency			
	AMH with			
	fluorescence, and after			
Fluorescence method	react with boric acid		The method is	TT1 '
	fluorescence quenching,	9-500 ng/mL	simple, rapid,	This
	HAuCl ₄ can enhance		high sensitivity	assay
	the fluorescence		· · · ·	
	quenching efficiency			

System	B concentration	Т	A	RSD
	(ng/mL)	I	Average	(%)
AMH-AuNPs	150	4293, 4087, 4155, 4400, 4044	4196	3.5
	180	3254, 3043, 3200, 3058, 3124	3156	2.9
AMH-HAuCl ₄	200	5623, 5824, 5577, 5702, 5500	5645	2.2
	500	3255, 2977, 2999, 3052, 3122	3081	3.6

Table 2S Accuracy of the different boron systems

Table 3S Effect of foreign substances

Coexistent substances	Tolerance (µmol/L)	Relative error(%)	Coexistent substances	Tolerance (µmol/L)	Relative error(%)
Mn ²⁺	400	0.36	\mathbf{F}^{\Box}	400	-6.9
Cd^{2+}	400	5.1	IO ₃ -	400	-8.7
Zn^{2+}	400	-1.14	SO ₄ ²⁻	400	0.5
Na ⁺	400	0.2	NO ₃ -	400	5.8
Glucose	400	-7.5	ClO ₄ -	400	2.1
Hg^{2+}	400	-3.9	Bi ³⁺	400	-0.3
Al^{3+}	400	0.4	SiO ₃ ²⁻	400	-4.6
Mannitol	400	6.7	H_2O_2	400	-6.7
Glycerol	400	4.6	Glycol	400	-3.8
Salicylic acid	200	6.9	Mandelic acid	400	4.1
L-tyrosine	40	4.4	L-glutamic acid	200	-0.1

Sample	Single value (ng/mL)	Average (ng/mL)	B content (ng/mL)	Spiked B (ng/m L)	Found B (ng/mL)	Recovery (%)	RSD (%)
Sample 1	81.1, 85.3, 90.6, 75.7, 92.0	84.9	420	150 200	229.1 324.1	97.57 96.8	2.4 2.7
Sample 2	58.7, 60.8, 57.6, 44.3, 73.8	59.0	300	150 200	199.8 304.2	95.6 98.8	1.7 3.0
Sample 3	108.4, 103.3, 92.0, 107.3, 114.4	105.1	530	200 400	328.3 461.7	102.6 99.7	1.6 4.1
Sample 4	23.7, 27.6, 22.2, 23.8, 27.3	24.9	120	200 400	301.4 445.6	109.6 104.9	2.6 3.4
Sample 5	30.5, 23.1, 30.4, 30.5, 31.8	29.3	150	200 400	300.7 446.3	107.6 103.9	2.7 4.1
Sample 6	56.4, 62.9, 73.1, 47.1, 50.0	57.9	290	200 400	310.7 448.5	100.9 97.9	3.7 2.3

Table 4S Results for the determination of boron in water samples (n=5)