Electronic Supplementary Information (ESI)

Label-free DNA detection based on oligonucleotide-stabilized silver nanoclusters and exonuclease III-catalyzed target recycling amplification

Hui Ma, Wei Wei, Qian Lu, Zhixin Zhou, Henan Li, Linqun Zhang and Songqin Liu*

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, 211189, P.R. China. Fax: 86-25-5209061; Tel.: 86-25-52090613; E-mail addresses: liusq@seu.edu.cn

-	
Name	Oligonucleotides sequence (5'-3')
N-DNA	СССТТААТССССТАТААТАААТТТТАААТАТТАТТАТТААТАА
G-DNA	ATTAATAAATAATATTTAAAAATTTATTATAGGGTGGGGTGGGGTGGGG
T-DNA	CCCCACCCCACCCCACCCTATAATAAATTTTAAAATATTAT
	AAAAA
One-base mismatched	CCCCACCCCACCCCACCCTATAATAAAAATTTAAAATATTAT
target DNA (T1)	AAAAA
Three-base mismatched	CCCCACCCCACCCCACCCTATAATAATAATAGTTAAATATTATTAATA
target DNA (T3)	AAAAA
Random target DNA (RA)	GATGAATACCTAGGACACTTACTATTAAACTGGTTTGGGAAAAACCAAA
	TATATT

 Table S1 Sequences of the oligonucleotides used in the assay

Fig. S1 Effect of reduction time on the assay.

Fig. S2 Effect of incubation time of N-DNA-Ag NCs enhanced by G-DNA. Error bars are calculated based on three replicates.

Fig. S3 (A) UV-vis absorption spectra and (B) fluorescence emission spectra of (black) N/G-DNA-Ag NCs and (red) the standard Rhodamine B with excitation at 545nm, where the absorbance values are equal.

Rhodamine B in water (QY=0.31) is chosen as a standard.^{1,2} The quantum yield of N/G-DNA-Ag NCs in water is calculated according to:

$$\Phi = \Phi_{\rm r} \times \frac{\rm I}{\rm I_{\rm r}} \times \frac{\rm A_{\rm r}}{\rm A} \times \frac{\rm n^2}{\rm n_{\rm r}^2}$$

Where the subscript "r" denotes the reference fluorophore of Rhodamine B, Φ is the quantum yield and Φ_r is 31%, I is the integrated emission peak areas, A and A_r are equal in this case, n and n_r are the refractive indices of the solvents (1.33 for water).

Fig. S4 Fluorescence changes of (a) N-DNA-Ag NCs and (b) N/G-DNA-Ag NCs within 1 week. Error bars are calculated based on three replicates.

Fig. S5 UV-vis absorption spectra of solutions (a) N-DNA-Ag NCs, (b) N/G-DNA-Ag NCs, (c) N/G-DNA-Ag NCs in the presence of Exo III. (d) N/G-DNA-Ag NCs in the presence of T-DNA (e) N/G-DNA-Ag NCs in the presence of T-DNA and Exo III. [N-DNA] = 10 μ M, [G-DNA] = 10 μ M, [T-DNA] = 1 μ M, [Exo III] = 300 U.

The successful Exo III amplification was supported by the corresponding UV-vis absorption spectra (Fig. S5). The UV-vis absorption spectra for N-DNA-Ag NCs (curve a), N/G-DNA-Ag NCs (curve b), N/G-DNA-Ag NCs in the presence of Exo III (curve c), N/G-DNA-Ag NCs in the presence of T-DNA (curve d) and N/G-DNA-Ag

NCs in the presence of T-DNA and Exo III (curve e) were fully in accordance with their fluorescence spectra.

References

- 1 D. Magde, G. E. Rojas and P. G. Seybold, Photochemistry and Photobiology, 1999, 70, 737-744.
- 2 J. H. Shen, Y. H. Zhu, C. Chen, X. L. Yang and C. Z. Li, Chem. Commun., 2011, 47, 2580-2582.