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Theory

The PARAFAC model

In the PARAFAC model, the second–order data for the Ical training matrices, each of 

them as a JK matrix Xi,cal (J and K are the number of data points in each mode), are 

joined with the unknown sample matrix Xu into a three-way data array X, whose 

dimensions are [(Ical + 1)JK]. This three-way data array has an internally 

mathematical structure called trilinear and the fitting of a trilinear three-way array to the 

PARAFAC model provides unique solutions. Uniqueness implies that the estimated 

PARAFAC model cannot be rotated without a loss of fit as opposed to two-way 

analysis where one may rotate scores and loadings without changing the fit of the 

model.1  If the array X is trilinear, each responsive component can be explained in terms 

of three vectors an, bn and cn, which collect the relative concentrations [(Ical + 1)1] for 

component n, and the profiles in both modes (J1) and (K1), respectively. The 

PARAFAC model2 can be defined as: 

Xijk =  +Eijk  (1)

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in which N is the total number of responsive components, ain is the relative 

concentration of component n in the ith sample, and bjn and ckn are the intensities at the j 

and k variables, respectively. The values of Eijk are the elements of the matrix array E, 

which contains the variation not captured by the model. The column vectors an, bn and 

cn are collected into the corresponding score matrix A and loading matrices B and C.

The decomposition of X by Eq. (1), usually accomplished through an alternating 

least–squares minimization scheme,1,3 retrieves the profiles in both data modes (B and 

C) and relative concentrations (A) of individual components in the (Ical + 1) mixtures, 
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whether they are chemically known or not, constituting the basis of the second–order 

advantage.

Some relevant issues concerning the application of PARAFAC model to the 

calibration of three-way data have to be considered: 

Initialization of the algorithm. Different strategies to manage this step include the use 

of vectors given by GRAM4 (generalized rank annihilation method), known spectral 

profiles of pure components, or loadings giving the best fit after a small number of 

PARAFAC runs with a few iterations. These alternatives can be found in Bro's 

PARAFAC package5 and are conveniently implemented in the MVC2 graphical 

interface.6 

Determination of the number of responsive components. Several methods can be 

applied to estimate the number of responsive components (N). CORCONDIA, a useful 

diagnostic tool which considers the PARAFAC internal parameter known as core 

consistency,7 involves the study of the structural model based on the data and the 

estimated parameters of gradually augmented models. If the addition of more 

components does not considerably improve the fit, the model could be considered as 

suitable, and the core consistency parameter significantly drops from a value of ca. 50. 

The evaluation of the PARAFAC residual error, i.e. the standard deviation of the 

elements of the array E in Eq. (1), which decreases with increasing N until it stabilizes 

at a value compatible with the instrumental noise, can be considered as another useful 

technique. The value of N can be established as the smallest number of components for 

which the residual error is not statistically different than the instrumental noise.8 

S3



Restrictions during the least–squares fit. With the aim of obtaining physically 

interpretable profiles, the alternating least–squares PARAFAC fitting can be 

constrained by several available restrictions. For instance, non–negativity restrictions in 

all three modes allow the fit to converge to the minimum with physical meaning from 

the several minima which may exist in certain cases.

Identification of specific components. The estimated profiles retrieved by the model 

have to be compared with those for standard solutions of the analytes of interest in order 

to identify the chemical components under investigation, since the order in which they 

are sorted can be different between samples, i.e., it depends on their contribution to the 

overall spectral variance. 

Calibration of the model to obtain absolute concentrations in unknown samples. 

Due to the fact that the three–way array decomposition provides relative values (A), 

absolute analyte concentrations can only be obtained after calibration. Calibration is 

carried out by regression of the set of standards with known analyte concentrations 

(contained in an Ical1 vector y), and regression of the first Ical elements of column an 

against y (provided they correspond to the Ical samples): 

k = y+  [a1,n | ... | aIcal,n ]   (2)

in which '+' implies taking the pseudo–inverse. Then, for each test sample, the unknown 

relative concentration of n has to be converted to absolute by division of the last 

element of column an [a(Ical+1)n] by the slope of the calibration graph k:

yu = a(Ical+1)n / k (3)
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