Electronic Supplementary Information

Fast and sensitive determination of sulfur dioxide in herbal medicines by microchip-based field asymmetric-wave ion mobility spectrometry

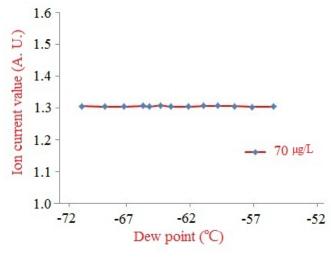
Xiaozhi Wang^{a*}, Weijun Zhao^b, Lingfeng Li^a, Xiangyang Wang^a, Peng Li^c, Yu

Wang^{d*}, Jikui Luo^a

^aDepartment of Information Science & Electronic Engineering, Zhejiang University, Hangzhou

310027, China

^bSu Zhou Wei Mu Intelligent System Ltd., Suzhou 215163, China


^c Suzhou Industrial Technology Research Institute of Zhejiang University, Suzhou 215163, China

^d Institute for Food and Drug Control of Jiangsu, Nanjing, 210008, China

CONTENTS

Figure S1 The relationship between the ion current value and dew point of the scrubbed air.

Figure S1

The detected signal of 70 μ g/L SO_2 from a standard solution is constant when the dew point of the scrubbed air flow was changed from -70 °C to -55 °C and the dew point of the total flow was raised to around -40 °C, which was measured in between the membrane filter and the FAIMS instrument shown in Fig. 2.