Highly sensitive electrochemical sensor for dopamine with a double-stranded deoxyribonucleic acid/gold nanoparticle/graphene modified electrode

Wencheng Wang^a, Yong Cheng^b, Lijun Yan^a, Huanhuan Zhu^b, Guangjiu Li^{b*}, Jing Li^a, Wei Sun^{a*}

^aCollege of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Fig. S1 (A) Cyclic voltammograms of 1.0×10^{-4} mol L⁻¹ DA with different scan rate (v) on dsDNA/Au/GR/CILE in pH 6.0 PBS (from a to 1 are 10, 40, 70, 100, 150, 200, 250, 300, 350, 400, 450, 500 mV s⁻¹, respectively); (B) Linear relationship of the redox peak current (Ip) versus $v^{1/2}$; (C) Linear relationship between the redox peak potentials (Ep) and lnv.

Coexisting substance	Concentration	Relative error (%)	Coexisting substance	Concentration	Relative error (%)
L-Glutamine	20.0 mg L ⁻¹	1.66	Ca ²⁺	$2.0 \times 10^{-5} \text{ mol } L^{-1}$	-3.22
L-Cysteine	20.0 mg L-1	3.03	Zn^{2+}	$2.0 \times 10^{-5} \text{ mol } L^{-1}$	-2.23
Citric acid	20.0 mg L ⁻¹	1.56	\mathbf{K}^+	$2.0 \times 10^{-2} \text{ mol } L^{-1}$	-1.74
Glucose	20.0 mg L ⁻¹	-3.14	Na ⁺	$2.0 \times 10^{-2} \text{ mol } L^{-1}$	-2.16
SDS	20.0 mg L ⁻¹	-2.11	$\mathrm{NH_{4}^{+}}$	2.0×10 ⁻⁵ mol L ⁻¹	-3.54
Fe ²⁺	2.0×10 ⁻⁵ mol L ⁻¹	-1.74	NO_3^-	2.0×10 ⁻² mol L ⁻¹	2.19
Mg^{2+}	2.0×10 ⁻⁵ mol L ⁻¹	-2.58	Cl⁻	$2.0 \times 10^{-2} \text{ mol } L^{-1}$	3.17

Table S1 Influence of coexisting substances on the determination of 1.0×10^{-4} mol L⁻¹ DA (n=3)

Sample	Specified	Detected	Added	Total	RSD	Recover
	(µmol L ⁻¹)	(µmol L-1)	(µmol L-1)	(µmol L-1)	(%)	(%)
1	63.28	64.52	20.0	83.99	1.96	97.4
2	63.28	63.23	40.0	103.87	1.89	101.6
3	63.28	62.86	60.0	124.15	2.02	102.2

Table S2 Determination of DA in the injection samples (n = 6)