## 549 Electronic Supplementary Information (3 figures and 3 tables)





Fig. S1. Simulated chromatograms according to Tables S1-S3; a chromatogram of one of
the classes is shown; the crosses indicate the location and height of the significant peaks for
the average chromatogram of the class.





559

Fig. S2. Overview of the response surfaces of four simulated experiments of the I-IV series (see Tables S1-S3). Percentage of correctly classified chromatograms by leave-one-out (*P%*) as a function of the window's width,  $\Delta t_w$ , and degree of overlapping of consecutive windows,  $\delta$ . At the right of the response surfaces, a scale indicating the color code for *P%* is given.



Fig. S3. Overview of the response surfaces of the four simulated experiments of the V series (see Tables S1-S3). Other details as in Fig. S2. 

## **573 Table S1**

574 Parameters used in the generation of the baselines for series I to V<sup>a</sup>

575

| Parameter                                                             | Symbol          | I-IV  | V      |
|-----------------------------------------------------------------------|-----------------|-------|--------|
| Time range                                                            | $t_0; t_{max}$  | 0; 50 | 0; 100 |
| Number of baseline peaks (noise)                                      | $N_{np}$        | 250   | 500    |
| Number of points per peak within $\pm 3s$ (restricted to $\ge 20$ )   | -               | 20    | 20     |
| Average height of the baseline peaks                                  | $h_{np}$        | 1     | 1      |
| Width of baseline peaks (as 4 times the peak st. deviation)           | $4s_{np}$       | 0.15  | 0.15   |
| Standard deviation of peak height (to add random values to $h_{np}$ ) | Snh             | 0.2   | 0.2    |
| Standard deviation of peak location (random lateral shifts)           | S <sub>nt</sub> | 0.05  | 0.05   |

576

<sup>a</sup> As detailed in Tables S2 and S3, the series were distinguished by the number, width and relative locations of the significant peaks. A baseline

578 was a sum of  $N_{np}$  Gaussian functions, each function giving rise to a baseline peak within the  $t_0$  to  $t_{max}$  range. Each baseline peak was defined

by 20 points which were evenly distributed between the  $\pm 3s$  region around the peak maximum. The average height of the baseline peaks was

580  $h_{np}$ , but the actual peak heights varied randomly with a standard deviation of  $s_{nh}$  around the average value. Evenly spaced initially, the baseline

581 peaks were laterally shifted at random with a standard deviation of  $s_{nt}$ . The origin of the vertical axis was located at the middle of the baseline

582 band by subtracting the average height of all the baseline points from all the points.

#### 585 **Table S2**

586 Features of the chromatograms for series I to V and percentage of correctly classified chromatograms by the omniscient method, P%<sub>max</sub>

587

| Series | Features of the chromatograms of the series <sup>a</sup>                                      | Experiment <sup>b</sup> | Peak widths, $4s_{sp}$ | Peak locations     | $P\%_{max}$ ° |
|--------|-----------------------------------------------------------------------------------------------|-------------------------|------------------------|--------------------|---------------|
| Ι      | A single peak; the peak width was varied                                                      | I/w1.5                  | 1.5                    | 20                 | 89 (11)       |
|        |                                                                                               | I/w5                    | 5                      | 20                 | 89 (11)       |
|        |                                                                                               | I/w20                   | 20                     | 20                 | 89 (11)       |
| Π      | Two peaks of the same width; the spacing between them was varied; the peak                    | II/w5/s7                | 5                      | 25; 32             | 94 (6)        |
|        | heights were different for the four classes (Table S3)                                        | II/w5/s23               | 5                      | 10; 33             | 94 (6)        |
| III    | Two peaks of different width; the spacing between them was varied; the peak                   | III/w1.5/w5/s11         | 1.5; 5                 | 10; 21             | 96 (4)        |
|        | heights were different for the four classes (Table S3)                                        | III/w1.5/w15/s18        | 1.5; 15                | 10; 28             | 96 (4)        |
| IV     | Two peaks of different width; the height of the 1 <sup>st</sup> peak was the same for classes | IV/w1.5/w15/s18         | 1.5; 15                | 10; 28             | 93 (7)        |
|        | B, C, D; the height of the 2 <sup>nd</sup> peak was the same for classes A, B (Table S3)      |                         |                        |                    |               |
| V      | Four peaks of the same width; both the spacing between them and the peak                      | V/w3/s5                 | 3                      | 18; 23; 28; 33     | 91.2 (7)      |
|        | width were varied; the peak heights were different for all the classes (Table S3)             | V/w3/s10                | 3                      | 32; 42; 52; 62     | 96.2 (3)      |
|        |                                                                                               | V/w3/s1.6/s10           | 3                      | 38; 39.6; 48; 49.6 | 97.5 (2)      |
|        |                                                                                               | V/w30/s10               | 30                     | 22; 32; 42; 52     | 98.7 (1)      |

588

<sup>a</sup> The positive significant peaks added to the baselines were Gaussian functions limited to the  $\pm 3s_{sp}$  range around their respective peak maxima. A Symlet10

590 wavelet was used to remove the tiny discontinuities which were produced at the ends of the  $\pm 3s$  region around the maximum of both the baseline and 591 significant peaks. The average peak heights ( $h_{sp}$ ) for the four A-D classes are indicated in Table S3.

592 <sup>b</sup>For each experiment, an acronym indicating the series and the peak width (w) and spacing (s) is used.

593 <sup>c</sup> Percentages over 4 classes x 25 chromatograms per class, except for series V where 4 classes x 20 chromatograms per class were simulated (the number of

594 critical cases is given between parentheses).

## **597 Table S3**

| Class | Ι  | II    | III   | IV     | V/w3/s5                | V/w3/s10               | V/w3/s1.6/s10          | V/w30/s10              |
|-------|----|-------|-------|--------|------------------------|------------------------|------------------------|------------------------|
| А     | 7  | 7; 13 | 7; 13 | 13; 10 | 1.90; 0.45; 0.26;0.98  | 0.24; 0.59; 1.12; 1.92 | 0.50; 1.94; 1.52; 0.26 | 0.86; 0.40; 1.71; 1.50 |
| В     | 9  | 9; 11 | 9 11  | 10; 10 | 1.70; 0.45; 0.26; 1.04 | 0.23; 0.77; 0.91; 1.87 | 0.36; 1.89; 1.76; 0.43 | 0.50; 0.56; 2.03; 1.15 |
| С     | 11 | 11; 9 | 11; 9 | 10; 7  | 1.61; 0.59; 0.35; 1.16 | 0.00; 0.80; 1.37; 2.02 | 0.72; 1.95; 1.20; 0.63 | 0.79; 0.28; 1.52; 1.75 |
| D     | 13 | 13; 7 | 137   | 10; 13 | 2.04; 0.24; 0.51; 1.16 | 0.05; 0.71; 0.84; 1.79 | 0.16; 2.25; 1.73; 0.32 | 0.76; 0.30; 1.94; 1.28 |
|       |    |       |       |        |                        |                        |                        |                        |

598 Average height of the significant peaks,  $h_{sp}$ , for series I to V<sup>a</sup>

# 599

600

<sup>a</sup> Within each class, the peak heights of the chromatograms of series I to IV were made to vary at random with a standard deviation of  $s_{ph} = 2$ .

602 The peak heights of the chromatograms of series V were made to vary at random within a range equal to the 15% - 20% of the average peak

603 height.