Electronic Supplementary Information (ESI)

In-situ characterization of Co-Cu oxides for catalytic application

Zhen-Yu Tian,^{*a,b,**} Henning Vieker,^{*c*} Patrick Mountapmbeme Kouotou,^{*b*} and André Beyer^{*c*}

^a Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190, China

^b Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany

^c Department of Physics, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany

* Corresponding author. Tel/Fax: +86-10 8254 3184; E-mail: tianzhenyu@iet.cn.

Section 1: Surface components

Itam	Nama	Co ₃ O ₄		CuCo ₂ O ₄			
nem	Name	Position	FWHM	% Area	Position	FWHM	% Area
	Ι	779.8	1.49	44.66	779.5	1.58	44.66
Co 2p _{3/2}	II	781.1	1.74	31.25	780.9	1.70	31.25
	III	782.4	2.30	15.18	782.2	2.15	15.18
Satellites	IV	785.1	4.40	3.57	785.2	4.60	3.57
Satellites	V	789.9	3.01	5.35	789.7	3.41	5.35

Table ESI 1 The curve fitting results of Co $2p_{3/2}$ and its satellite of Co-Cu oxide films

Table ESI 2 The curve fitting results of Cu $2p_{3/2}$ at	and its satellite of Co-Cu oxide films
---	--

Itom	N	CuCo ₂ O ₄			CuO		
nem	Name	Position	FWHM	% Area	Position	FWHM	% Area
Cu 2p	i	933.7	2.20	29.83	933.7	2.20	29.54
Cu 2p _{3/2}	ii	935.0	3.00	31.75	935.1	3.00	31.43
	iii	941.1	1.30	2.88	941.1	1.36	2.85
Satellites	iv	942.2	3.861.997	26.90	942.3	3.92	26.63
	v	944.3	1.40	5.76	944.3	1.36	5.70
Cu ¹⁺		932.4	1.09	2.88	932.4	0.95	3.84

Co ₃ O ₄		CuCo ₂ O ₄			CuO				
nem	Position	FWHM	% Area	Position	FWHM	% Area	Position	FWHM	% Area
O _{Lat}	530.12	1.177	56.35	529.77	1.200	30.24	529.81	1.095	22.77
O _{Ad}	531.54	1.741	40.10	531.96	1.932	69.76	532.07	2.476	77.23
O _{Sub}	533.24	1.705	3.55	-	-	-	-	-	-

Table ESI 3 The curve fitting results of O 1s of Co-Cu oxide films

Note: OLat, OAd and OSub refer to lattice, adsorbed and sublattice oxygen, respectively.

Tables ESI 1-3 show the curve fitting results of Co $2p_{3/2}$, Cu $2p_{3/2}$ and O 1s as well as their corresponding satellits of the prepared Co-Cu oxides. As shown in Fig. 4 in the main text, CuCo₂O₄ exhibits quite similar Co 2p and Cu 2p shapes to those measured for Co₃O₄ and CuO, respectively. For O 1s, a significant difference is observed in terms of components. From Co₃O₄ to CuO, the amount of lattice oxygen decreases and adsorbed oxygen increases. Moreover, a small quantity of sublattice oxygen was observed in the prepared Co₃O₄ films, while such component was not measured in CuCo₂O₄ and CuO samples. All fits were done according to high quality reference data published by Biesinger et al.^{1, 2}

Section 2: Comparison of the catalytic performance

Table ESI 4 Overview of the catalytic performance of CO and propene oxidation with Co-Cu oxides and some catalysts in the literature

Material	Weight (mg)	Gas composition	WHSV ^{a} (ml g ⁻¹ h ⁻¹)	T ₅₀ ^b (°C)	Ref.
CuCo ₂ O ₄	12	1% CO/10% O ₂ in Ar	75000	190	This work
Co ₃ O ₄ thin film	12	1% CO/ 10% O ₂ /89% Ar	75000	335	3
Pt/Al ₂ O ₃	2/200	1% CO/1.38% O ₂ in N ₂	90000	333	4
α -Fe ₂ O ₃ thin film	20	1% CO/10% O ₂ / 89% Ar	45000	320	5
Bare mesh	-	1% CO/10% O ₂ in Ar	-	684	This work
CuCo ₂ O ₄	12	1% $C_3H_6/10\% O_2$ in Ar	75000	330	This work
CuO	12	1% C ₃ H ₆ /10% O ₂ in Ar	75000	272	6

Electronic Supplementary Material (ESI) for Faraday Discussions	
This journal is © The Royal Society of Chemistry 2014	

Co ₃ O ₄	12	1% C ₃ H ₆ /10% O ₂ in Ar	75000	347	3
Co ₃ O ₄	12	2% $C_3H_6/20\%O_2$ in Ar	75000	354	7
Cu _{0.72} Co _{2.28} O ₄	40	13% C ₃ H ₆ / 52%O ₂ in N ₂	15000	275	8
Co _{2.66} Mn _{0.34} O ₄	12	2% $C_3H_6/20\%O_2$ in Ar	75000	321	7
α-Fe ₂ O ₃ at 400 °C	20	1% $C_3H_6/10\%$ O_2 in Ar	45000	355	9
Au/Al ₂ O ₃	200	1.5% $C_3H_6/$ 4% O_2 in He	22500	349	10
Au/Li ₂ O/Al ₂ O ₃	200	1% $C_3H_6/$ 9% O_2 in He	225000	327	11
Au/MgO/Al ₂ O ₃	200	1% $C_3H_6/$ 9% O_2 in He	214286	359	11
$La_{1.7}Sr_{0.3}CuO_4S_{0.2}$	200	0.1% C ₃ H ₆ / 5% O ₂ in N ₂	30000	419	12
Bare mesh	-	1% C ₃ H ₆ /10% O ₂ in Ar	-	529	This work

Note:

WHSV is weight hourly space velocity; b T₅₀ refers to the temperatures at which 50% propene is converted.

Table ESI 4 compares the catalytic performance of the deposited Co-Cu oxides with that of the selected catalysts in the literature. Special attention is paid to the comparison of the catalytic performance with noble metals and transition metal oxides. As can be seen from the table, both noble metals and transition metal oxides present attractive results in terms of CO and propene oxidation. For CO oxidation, Co-Cu oxides exhibit lower T_{50} than Pt/Al_2O_3 and other Co-based oxides. Although Co-Cu oxides are slightly less active than CuO, their performances are comparable with the active Au/Li₂O/Al₂O₃ and Co₃O₄. Moreover, Co-Cu oxides own better thermal stability than CuO and Co₃O₄, demonstrating that Co-Cu binary oxides have more potential to be applied in the real catalytic oxidation processes.

Section 3: Experimental conditions

Table EST 5 Experimental conditions for the preparation of Co-Cu oxides

Precursors	$Co(acac)_3$, $Cu(acac)_2$
Solvent	Ethanol
Concentration of precursor	5 mM
Frequency	4 Hz
Opening time	2.5 ms
Evaporation temperature	220 °C

Transportation temperature	220 °C
Substrate temperature	400 °C
Deposition pressure (mbar)	30
N ₂ (SLM)	0.5
O ₂ (SLM)	1.0
Substrates	Silicon, planar and bare mesh of stainless steel

Section 4: High resolution helium ion micrographs (HIM)

Additional micrographs of the CuCo₂O₄ films:

Fig. ESI 1 HIM images of CuCo₂O₄ films on stainless steel mesh used for catalytic test.

Fig. ESI 2 HIM images of CuCo₂O₄ films on stainless steel mesh used for catalytic test.

Fig. ESI 3 HIM images of CuCo₂O₄ films on stainless steel mesh used for catalytic test.

References (ESI)

- 1. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci., 2010, 257, 887-898.
- M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, *Appl. Surf. Sci.*, 2011, 257, 2717-2730.
- P.M. Kouotou, Z.Y. Tian, U. Mundloch, N. Bahlawane, K. Kohse-Höinghaus, *RSC Adv.*, 2012, 2, 10809-10812.
- 4. V.A. Törncrona, M. Skoglundh, P. Thormählen, E. Fridell, E. Jobson, *Appl. Catal. B: Environ.*, 1997, **14**, 131-145.
- 5. P.M. Kouotou, Z.Y. Tian, H. Vieker, K. Kohse-Höinghaus, Surf. Coat. Technol., 2013, 230, 59-65.
- 6. Z.Y. Tian, H.J. Herrenbrück, P.M. Kouotou et al., Surf. Coat. Technol., 2013, 230, 33-38.

- Z.Y. Tian, P.H.T. Ngamou, V. Vannier, K. Kohse-Höinghaus, N. Bahlawane, *Appl. Catal. B: Environ.*, 2012, **117-118**, 125-134.
- 8. H. Baussart, R. Delobel, M.L. Bras, J.M. Leroy, J. Chem. Soc., Faraday Trans. I, 1979, 75, 1337-1345.
- 9. P.M. Kouotou, Z.Y. Tian, H. Vieker, A. Beyer, A. Gölzhäuser, K. Kohse-Höinghaus, *J. Mater. Chem. A*, 2013, **1**, 10495-10504.
- 10.S. Ivanova, C. Petit, V. Pitchon, Gold Bull., 2006, 39, 3-8.
- 11.A.C. Gluhoi, N. Bogdanchikova, B.E. Nieuwenhuys, J. Catal., 2005, 232, 96-101.
- 12.M. Machida, K. Ochiai, K. Ito, K. Ikeue, J. Catal., 2006, 238, 58-66.