# Two fluorescent Schiff base sensors for Zn<sup>2+</sup>: the Zn<sup>2+</sup>/Cu<sup>2+</sup>

## ion interference

Arturo Jiménez-Sánchez,<sup>a</sup> Benjamín Ortíz,<sup>b</sup> Vianney Ortiz Navarrete,<sup>b</sup> Norberto Farfán,<sup>c</sup>

and Rosa Santillan\* $^{\mathrm{a}}$ 

<sup>a</sup> Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, México, D.F., México.

<sup>b</sup> Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, México, D.F., México.

<sup>c</sup> Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, México D.F., México.

Correspondence should be addressed to e-mail: <a href="mailto:rsantill@cinvestav.mx">rsantill@cinvestav.mx</a>

## **Supplementary Information**

| CONTENTS                                                                                                                       | PAGE                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|
| Experimental                                                                                                                   | S2                   |  |  |
| Synthesis and characterization of L1 and L2                                                                                    | S2                   |  |  |
| Scheme S1. Synthetic methodology of compounds L1 and L2                                                                        | S2                   |  |  |
| Figure S1. UV-Vis and Fluorescence spectra for the titration of $Co^{2+}$ , $K^+$ , $Li^+$ , $Na^+$ , $Pb^{2+}$                | , Cd <sup>2+</sup> , |  |  |
| Ni <sup>2+</sup> , Hg <sup>2+</sup> , Cu <sup>2+</sup> and Ca <sup>2+</sup> with (a) L1 and (b) L2                             | <b>S3</b>            |  |  |
| Figure S2. X-ray structures for L1 and L2                                                                                      | <b>S8</b>            |  |  |
| Figure S3. Fluorescence kinetics for L1 and L2                                                                                 | <b>S8</b>            |  |  |
| <b>Figure S4.</b> Hyperquad log $K_a$ refinement and Hill plots for association constants (log $K_a$ ) of                      |                      |  |  |
| $Zn^{2+}/Cu^{2+}$                                                                                                              | <b>S9</b>            |  |  |
| Figure S5. UV-Vis spectra for L1 and L1•Zn solvent polarity effect                                                             | S11                  |  |  |
| <b>Figure S6.</b> <sup>1</sup> H NMR spectra for L1 and L2 upon addition of $Zn^{2+}$ , $Cu^{2+}$ and $Fe^{2+}$ in DMSO- $d_6$ |                      |  |  |
|                                                                                                                                | S12                  |  |  |
| Figure S7. UV-Vis spectra for tartrate anion interaction with L2•Zn                                                            | S17                  |  |  |
| Figure S8. UV-Vis spectra for ATP interaction with L2•Zn                                                                       | <b>S17</b>           |  |  |
| Figure S9. Absorption spectra showing the colorimetric response process for L1 and L2 in the                                   |                      |  |  |
| presence of Fe <sup>2+</sup> ions                                                                                              | <b>S18</b>           |  |  |
| Figure S10. Spectrophotometric titration for the pH profile of L1 and L2                                                       | S19                  |  |  |

| <b>Figure S11.</b> Fluorescence spectra of L1 in a sample containing both, $Zn^{2+}$ and $Cu^{2+}$ | <b>S19</b> |
|----------------------------------------------------------------------------------------------------|------------|
| Figure S12. FACS flow cytometry for L2 with $Zn^{2+}$ and $Cu^{2+}$                                | S20        |
| Figure S13. Computed (PBE0/6-31G(d)/PCM) Charge Transfer properties for L1 / L2                    | S21        |
| Table S1. NTO pair orbital distribution for L2, L2•Zn and L2•Cu                                    | S22        |

### Experimental

All reagents and solvents are commercially available and used as received. The solvents were HPLC grade. The <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a JEOL ECA+500, using CD<sub>3</sub>OD and CDCl<sub>3</sub> as solvent. Chemical shifts were reported in parts per million (ppm) relative to internal TMS. Mass spectra were recorded with an Agilent Technologies MS TOF using the ESI(+) technique. UV-vis absorption spectra were recorded in a Perkin Elmer UV/VIS Spectrophotometer Lambda 12 and fluorescence spectra in a Varian Cary Eclipse Fluorescence Spectrometer. All fluorescence quantum yield measurements were obtained by using the experimental procedure reported in reference 19 from main text, reference 1 from ESI.

#### Synthesis and characterization of L1 and L2



Scheme S1. Synthetic methodology for L1 and L2.

2,4-*di*-*tert*-*butyl*-6-[(1-*hydroxycyclohexylmethylimino*)*methyl*]*phenol* (**L1**). The title compound was synthesize by subtle modifications of a previously reported methodology [2] from 3,5-*di*-*tert*-butyl salicylaldehyde 0.50 g (2.13 mmol) and 1-aminomethyl-1-cyclohexanol hydrochloride 0.35 g (2.13 mmol) under reflux of methanol for 30 min, using a Dean-Stark trap to give a yellow powder in >90% yield of **L1**. m.p.: 98-100 °C. IR (KBr)  $v_{max}$ : 3438 (OH), 2958, 2935, 2866, 1628 (C=N), 1596, 1474, 1441, 974, 887, 852, 715 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 13.59 (1H, br, OH), 8.37 (1H, s, H-8), 7.40 (1H, d, J = 2.3 Hz, H-4), 7.11 (1H, d, J = 2.3 Hz, H-6), 3.58 (2H, s, CH2-10), 1.72-.1.47 [10H, m, (-CH<sub>2</sub>-)<sub>5</sub>], 1.45 [9H, s, -C(CH<sub>3</sub>)<sub>3</sub>], 1.31 [9H, s, -C(CH<sub>3</sub>)<sub>3</sub>]. <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ : 168.1 (C-8), 158.2 (C-2), 140.3 (C-5), 136.8 (C-3), 127.2 (C-4), 126.2 (C-6), 117.9 (C-7), 71.6 (C-11), 70.4 (C-10), 35.9 (C-12 and C-16), 35.1 (-C(CH<sub>3</sub>)<sub>3</sub>), 34.2 (-C(CH<sub>3</sub>)<sub>3</sub>), 31.6 (-C(CH<sub>3</sub>)<sub>3</sub>), 29.5 (-C(CH<sub>3</sub>)<sub>3</sub>), 26.0 (C-14), 22.0 (C-13 and C-15). Anal. Calcd. for C<sub>22</sub>H<sub>35</sub>N<sub>1</sub>O<sub>2</sub>: C 76.48, H 10.21, N 4.05; found: C 76.42, H 10.18, N 4.18. HR-APCI-MS: *m/z* for C<sub>22</sub>H<sub>35</sub>NO<sub>2</sub> [M + H]<sup>+</sup> calc.: 346.2741, found: 346.2745.

2-[{(1-hydroxylcyclohexyl)methylimino}methyl]phenol (L2). The title compound was prepared from salicylaldehyde 0.20 g (1.64 mmol) and 1-aminomethyl-1-cyclohexanol hydrochloride 0.27 g (1.64 mmol) under reflux for 30 min, to give 0.36 g (1.55 mmol, 95% yield) of L2. m.p.: 156-158 °C. IR (KBr)  $v_{max}$ : 3221 (NH), 3050, 2925, 2850, 1644 (C=O), 1611 (C=N), 1524,

1288, 1146, 912, 742 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 13.41 (1H, br, OH), 8.35 (1H, s, H-8), 7.32-7.26 (2H, m, H-4 and H-6), 6.96-6.90 (1H, m, H-3), 6.89-6.86 (1H, m, H-5), 3.58 (2H, s, CH<sub>2</sub>-10), 2.16 (1H, s, br, OH), 1.72-1.53 (8H, m, CH<sub>2</sub>-12, CH<sub>2</sub>-13, CH<sub>2</sub>-15 and CH<sub>2</sub>-16), 1.33-1.28 (2H, m, CH<sub>2</sub>-14). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ : 166.9 (C-8), 161.3 (C-2), 132.5 (C-4), 131.5 (C-6), 118.9 (C-7), 118.7 (C-5), 117.2 (C-3), 71.5 (C-11), 70.2 (C-10), 35.8 (C-12 and C-16), 25.8 (C-14), 21.9 (C-13 and C-15). Anal. Calcd. for C<sub>14</sub>H<sub>19</sub>N<sub>1</sub>O<sub>2</sub>: C 72.07, H 8.21, N 6.00; found: C 72.16, H 8.19, N 6.12. HR-APCI-MS: m/z for C<sub>14</sub>H<sub>19</sub>NO<sub>2</sub> [M + H]<sup>+</sup> calc.: 234.1489, found: 234.1491.

**Figure S1.** UV-Vis and Fluorescence spectra for the titration of (a) **L1** and (b) **L2** with  $Co^{2+}$ ,  $K^+$ ,  $Li^+$ ,  $Na^+$ ,  $Pb^{2+}$ ,  $Cd^{2+}$ ,  $Ni^{2+}$ ,  $Hg^{2+}$ ,  $Cu^{2+}$  and  $Ca^{2+}$ . The Stock solutions of metal acetates (1 x 10<sup>-4</sup> mol L<sup>-1</sup>) and **L1 / L2** (1 x 10<sup>-5</sup> mol L<sup>-1</sup>) were prepared in water and water : methanol (95 : 5, v/v), respectively.

















Figure S2. X-ray structures for L1 and L2 (CCDC reference number 712147 and 712149, respectively. O. Domínguez, B. Rodríguez-Molina, M. Rodríguez, A. Ariza, N. Farfán and R. Santillan, *New J. Chem.*, 2011, **35**, 156.).



**Figure S3**. Fluorescence kinetics for: a) **L1** (2 mM) upon addition of  $Zn^{2+}$  (t = 120 s) to form **L1•Zn** and  $Cu^{2+}$  (t = 23 h) to form **L1•Cu**; and b) **L2** (2 mM) upon addition of  $Zn^{2+}$  (t = 120 s) to form **L2•Zn** and  $Cu^{2+}$  (t = 83 h) remaining the **L2•Zn** complex.

**Figure S4.** HyperQuad log  $K_a$  refinement for L-Zn complexes and Hill plots for association constants (log  $K_a$ ) of  $Zn^{2+}/Cu^{2+}$  based on (log(Y/1 - Y))  $n \log [M^{2+}] + \log K$ ).



**(a)** 

HypSpec. Refinement concluded at 02/06/2015 04:43:21 p. m. Data from C:\Users\ARTURO JIMÉNEZ\Desktop\tBSZn.HQD (modified) Project title:

25 (maximum) Iterations performed

|           |             | standard  |
|-----------|-------------|-----------|
| Log beta  | value       | deviation |
| ZnL       | 8.4465      | 0.0789    |
| ZnL2      | 10.8138     | 0.0972    |
|           |             |           |
| Correlati | on coeffic: | ients     |

2 1.0 1 Parameter numbers 1 ZnL 2 ZnL2





**(b)** 



HypSpec. Refinement concluded at 24/10/2014 04:25:36 p. m. Project title: L1-Zn Converged in 11 iterations with sigma = 4.0003

| Loa | heta | value  | standard<br>deviation |
|-----|------|--------|-----------------------|
| LZn | Deeu | 5.2771 | 0.0048                |







Figure S5. UV-Vis spectra for L1 and L1•Zn solvent polarity effect





**Figure S6.** <sup>1</sup>H NMR spectra for L1 and L2 upon addition of  $Zn^{2+}$  and  $Cu^{2+}$  in DMSO- $d_6$ :









Figure S7. UV-Vis spectra for sodium tartrate anion interaction with L2•Zn



Figure S8. UV-Vis spectra for Adenosine 5'-triphosphate disodium salt hydrate interaction with L2•Zn



**Figure S9**. Absorption spectra showing the colorimetric response process for L1 and L2 in the presence of  $\text{Fe}^{2+}$  ions in water : methanol solution (95 : 5, v/v, 10 mM HEPES) (a). Color changes upon addition of 2 equiv. of different ions to: (b) L1 and (c) L2, in the visible (above) and under 365 nm UV-light (below).





**Figure S10**. Spectrophotometric titration for the pH profile of (a) **L1** and (b) **L2** in acid (left) and basic (right) media.

**Figure S11.** Fluorescence spectra of **L1** in a sample containing both,  $Zn^{2+}$  and  $Cu^{2+}$  metal ions. Gray line, no fluorescence response was observed upon addition of **L1** to the  $Cu^{2+}$  saturated solution; and blue line, the observed fluorescence response upon addition of  $S^{2-}$  anions, indicating the presence of  $Zn^{2+}$  and  $Cu^{2+}$  in the same test sample. Excitation wavelength at  $\lambda_{ex} = 365$  nm.



**Figure S12.** FACS flow cytometry for **L2** with  $Zn^{2+}$  and  $Cu^{2+}$ . Jurkat cells were cultured in the presence of 20  $\mu$ M of  $Zn^{2+}$  and 20  $\mu$ M of  $Cu^{2+}$  for 4 hours, then **L2** was incubated for 30 min. Dot plots show forward scatter (FSC-A) *vs.* side scatter (SSC-A) and histograms show fluorescence intensity at 450 nm. Gated cells were selected according to side (FSC-A) and complexity (SSC-A) and emission of fluorescence at 450 nm was analyzed on live cells (histograms). Dead cells were excluded during acquisition by using propidium iodide (PI).



**Figure S13.** Computed (PBE0/6-31G(d)/PCM): a) mapped electrostatic potential for; b) difference in total electron density computed for the ground and first excited states; b)  $D_{CT}$  graphical representation; and c) centroids of charge (C <sub>+</sub> (r)/C <sub>-</sub> (r), representing the excess electron density in the ground (green) and excited (red) state, for L1 (left) and L2 (right). Reference 28-29 from the Main text or references 3 and 4 from this file.



We studied the charge transfer excitation parameters by means of the recently proposed spatial extent index [28-29] For L1 the obtained fraction of electron charge transferred upon de-excitation from the local excited (LE) state was  $q_{\rm CT} = 0.51$  at a  $D_{\rm CT} = 2.75$  Å spatial distance from the donor centroid to the acceptor centroid. Moreover, the dipole moment difference was estimated to be 6.68 D. Thus, Figure S8 shows the graphical representation of  $D_{CT}$ , and excess of electron density centroids (C + (r)/C - (r)) as defined in refs [28-29]. The H index defined as half of the sum of the centroid axis along the Donor – Acceptor direction is 1.18 Å, which resulted to be 1.58 Å lower than the CT excitation length, this means almost no overlap between donor and acceptor centroids, which makes the CT process highly efficient. However, in the case of L2 being a more rigid ligand, the electronic communication obtained by means of this spatial extent index revealed a  $q_{\rm CT} = 0.62$  at a  $D_{\rm CT} = 1.97$  Å spatial distance from the donor to the acceptor centroid, representing a larger fraction of electron charge transferred, despite the smaller transition dipole moment of 5.01 D. The obtained spatial distance for L2 is larger; hence, the difference between H index = 1.47 Å represents less overlap between donor and acceptor centroids, which makes the CT process highly efficient.

**Table S1.** (a) Molecular Orbital contribution; Oscillator strength (f); transition wavelength (nm) and energy (eV) values and NTO coefficient (w) for the free ligand L2, L2•Zn and L2•Cu. (b) NTO pairs for sensor L1. (a)

| Electronic                     | Properties                                                        | Hole            | Electron    | Assign                                                                  |
|--------------------------------|-------------------------------------------------------------------|-----------------|-------------|-------------------------------------------------------------------------|
| $S_0 \rightarrow S_1$          | HOMO – LUMO;<br>f = 0.174; 372 nm<br>(3.33 eV)<br>w = 0.94        |                 |             | $Sal \pi \rightarrow Sal \pi^*$                                         |
| $S_0 \rightarrow S_3$          | HOMO-1 – LUMO+2<br>f = 0.091; 348 nm<br>(3.56 eV)<br>w = 0.82     | a to the second |             | $Sal \ \pi \to Sal \ \pi^*$                                             |
| $S_0 \rightarrow S_6$          | HOMO-2 –<br>LUMO+1;<br>f = 0.369; 265 nm<br>(4.17 eV)<br>w = 0.78 |                 |             | $\pi \rightarrow Sal \pi^*$                                             |
| $S_0 \rightarrow S_2$          | HOMO – LUMO+1;<br>f = 0.183; 354 nm<br>(3.50 eV)<br>w = 0.86      |                 |             | <sup>1</sup> MLCT;<br>$d_{x}^{2} - y^{2} \pi \rightarrow Sal - \pi^{*}$ |
| $S_0 \mathop{\rightarrow} S_5$ | HOMO-1 -LUMO+2;<br>f = 0.091; 366 nm<br>(3.37 eV)<br>w = 0.89     |                 |             | $^{1}$ MLCT;<br>$\pi \rightarrow all \cdot \pi^{*}$                     |
| $S_0 \rightarrow S_1$          | HOMO -LUMO;<br>f = 0.078; 328 nm<br>(3.78 eV)<br>w = 0.81         |                 | Store State | $d_z^2 \pi \rightarrow all \cdot \pi^*$                                 |
| $S_0 \rightarrow S_2$          | HOMO-1 –LUMO+<br>f = 0.142; 367 nm<br>(3.37 eV)<br>w = 0.92       |                 |             | $all-\pi \rightarrow all-\pi^*$                                         |
| <b>(b)</b>                     |                                                                   |                 |             |                                                                         |
| $S_0 \rightarrow S_1$          | HOMO – LUM<br>f = $0.236$ ; 328<br>(3.78 eV)<br>w = $0.92$        | IO;<br>nm       |             | $Sal \pi \rightarrow Sal \pi^*$                                         |
| $S_0 \rightarrow S_3$          | HOMO-1 – LUN<br>f = $0.063$ ; 302<br>(4.10 eV)<br>w = $0.87$      | 10+2<br>nm      |             | $Sal \ \pi \rightarrow Sal \ \pi^*$                                     |

<sup>1</sup> S. Fery-Forgues, D. Lavabre, J. Chem. Educ., 1999, 76, 1260.

<sup>2</sup> O. Domínguez, B. Rodríguez-Molina, M. Rodríguez, A. Ariza, N. Farfán, R. Santillan, *New J. Chem.*, 2011, **35**, 156.

<sup>3</sup> M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, *et al.* Gaussian 03, Revision C.02, Wallingford CT, Gaussian, Inc., 2004.

<sup>4</sup> C. Adamo, D. Jacquemin, Chem. Soc. Rev., 2013, 42, 845.