Supporting Information

Versatile and highly sensitive homogeneous electrochemical strategy

based on split aptamer binding-induced DNA three-way junction and

exonuclease III-assisted target recycling

Ting Hou, Wei Li, Lianfang Zhang and Feng Li*

College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University

Qingdao 266109, China

* Corresponding author. Tel/Fax: +86-532-86080855

E-mail: lifeng@qust.edu.cn

Fig. S1. (A) The DPV peak current versus pH value of the buffer solution in the absence and presence of 50 nM ATP, respectively, and the signal-to-noise ratio (S/N) versus pH value. (B) The DPV peak current versus the reaction temperature in the absence and presence of 50 nM ATP, respectively, and the signal-to-noise ratio (S/N) versus the reaction temperature. (C) The DPV peak current versus the reaction time toward the detection of 50 nM ATP.

Fig. S2 The schematic illustration of the DNA three-way junction self-assembled by DNA1, DNA2 and MB-DNA in the presence of the target analyte (ATP).

Name	Sequence (from 5' to 3')
DNA1	5'– <u>AGACG</u> GG <i>CTT</i> C GGAGGAGG TATAGA–3'
DNA2	5'- CTGGGGGAG AAG <u>AAACCAA</u> TGGAGAG-3'
MB-DNA	5'-ATTGTGTATGTTGC <u>TTGGTTTCGTCT</u> -methylene blue-3'

Table S1 Sequences of the oligonucleotides used in the experiments ^a

^{*a*} In DNA1 and DNA2, the boldface letters represent the sequences of ATP split aptamer fragments. The italic letters in DNA1 and DNA2, the singly underlined letters in DNA1 and MB-DNA, and the doubly underlined letters in DNA2 and MB-DNA represent the sequences complementary to each other, respectively.

Method	Detection Limit	Strategy	Ref.
	(M)		
Homogeneous	1.0 × 10 ⁻¹⁰	Split aptamer binding-induced three-way junction and signal amplification by Exo III-assisted target recycing	This work
Homogeneous	1.0 × 10 ⁻⁹	Aptamer-based strategy with signal amplification by Exo III-assisted ATP recycling	1
Heterogeneous	1.0 × 10 ⁻⁸	Highly generalizable target-responsive electrochemical aptamer switch (TREAS)	2
Heterogeneous	1.0 × 10 ⁻⁸	Utilization of the aptamer complementary DNA oligonucleotides as probes for electrochemical sensing	3
Heterogeneous	1.0 × 10 ⁻⁶	An electrochemical sandwich assay based on split aptamers	4
Heterogeneous	1.0 × 10 ⁻¹⁰	Blank peak current-suppressed electrochemical aptameric sensing platform	5
Heterogeneous	3.0×10^{-10}	Microfluidic electrochemical aptamer- based sensor by constructing Au/Ag dual- metal array three-electrode on-chip	6
Heterogeneous	3.0 × 10 ⁻⁸	"Signal on" and one-spot simultaneous detection of multiple small molecular analytes based on electrochemically encoded barcode quantum dot tags	7

 Table S2 Comparison of analytical performance for ATP detection by our strategy and other

 electrochemical methods reported in literature

References

- 1 S. F. Liu, Y. Wang, C. X. Zhang, Y. Lin and F. Li, Chem. Commun., 2013, 49, 2335-2337.
- 2 X. L. Zuo, S. P. Song, J. Zhang, D. Pan, L. H. Wang and C. H. Fan, J. Am. Chem. Soc., 2007, 129, 1042–1043.
- 3 Y. Lu, X. C. Li, L. M. Zhang, P. Yu, L. Su and L. Q. Mao, Anal. Chem., 2008, 80, 1883–1890.
- 4 X. L. Zuo, Y. Xiao and K. W. Plaxco, J. Am. Chem. Soc., 2009, 131, 6944-6945.
- 5 S. Zhang, R. Hu, P. Hu, Z. S. Wu, G. L. Shen and R. Q. Yu, Nucleic Acids Res., 2010, 38, e185.
- 6 Y. Du, C. G. Chen, M. Zhou, S. J. Dong and E. K. Wang, Anal. Chem., 2011, 83, 1523-1529.
- 7 H. X. Zhang, B. Y. Jiang, Y. Xiang, Y. Y. Zhang, Y. Q. Chai and R. Yuan, *Anal. Chim. Acta*, 2011, **688**, 99–103.