A single-bead telomere sensor based on fluorescence resonance energy transfer

Xiao Fan^{*a*,#}, Qiaoli Yue^{*b*,#}, Yanyan Li^{*a*,#}, Yingya Liu^{*a*}, Lu-Lu Qu^{*a*}, Yingnan Cao^{*a*}, and Haitao Li^{*a*,*c*}*

^a Contribution from the School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China

^b Department of Chemistry, Liaocheng University, Liaocheng 252059, China

° Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK

* corresponding author:

Haitao Li

School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China

Tel, +8618905203826

Email: haitao@jsnu.edu.cn

#These authors are contributed equally to the manuscript

Supplementary information:

Table S1 Dependability (Rs) of the single bead sensor which calculated by fluorescence intensity.

(A) calculated by peak area of fluorescence, (B) calculated by peak height of fluorescence.

Sequence	Addition of ZnTCPP			Addition of Target DNA			
	IDonor	IAcceptor	ID/IA	IDonor	IAcceptor	ID/IA	_ RS
A I	10.98	32.14	0.34	39.03	7.67	5.09	14.97±3.47
П	11.96	31.39	0.38	39.88	6.40	6.23	16.39±1.54
Ш	16.33	27.53	0.59	40.45	6.30	6.42	10.88±0.23
VI	27.80	18.97	1.47	43.98	3.94	11.17	7.60±0.06

V	39.91	7.55	5.29	44.38	0.73	60.96	11.52±0.22
Non-binding DNA	16.33	27.53	0.59	21.72	29.15	0.75	1.27
BI	0.24	0.76	0.31	0.81	0.19	4.15	13.39±1.86
Ш	0.25	0.75	0.34	0.84	0.16	5.18	15.24±1.63
Ш	0.35	0.65	0.53	0.84	0.16	5.12	9.66±0.31
VI	0.56	0.44	1.25	0.90	0.10	8.79	7.03±0.09
V	0.82	0.18	4.47	0.97	0.031	30.81	6.89±0.10
Non-binding DNA	0.35	0.65	0.53	0.41	0.59	0.70	1.32

Table S2. FRET efficiencies

DNA	FRET efficiencies after addition of target	FRET efficiencies between Crimson 625 and
sample	DNA	Alexa 488
Line 1	0.22±0.02	0.75 ±0.04
Line 2	0.15±0.04	0.76±0.01
Line 3	0.18±0.01	0.63±0.01
Line 4	0.12±0	0.46±0
Line 5	0.05±0	0.22±0

The single-bead FRET sensor was assumed to be homogeneous in solution. The concentration of

microspheres was calculated by equation: $C = \frac{C_1 V_1}{V}$, where C₁, V₁ is the original concentration (2.3×10¹²/mL) and volume of microspheres solution (20 µL), respectively, V is total volume of solution.

There are two kinds of DNA distribution in a sensor solution. One was a high density state which bounded to the bead (local DNA) and another was for those DNA molecules in free solution. Here, the concentration of local DNA on a single microsphere was calculated by

$$C = \frac{N_A}{V}$$

equation: V, where N is the number of carboxyl groups on the surface of the a microsphere (*Analyst, 2011, 136, 1599-1607*), N_A is avogadro's number, V is volume of a microsphere.